Sociedade de Engenharia de Áudio Artigo de Convenção Apresentado na XVI Convenção Nacional

8 a 10 de Maio de 2012, São Paulo, SP

Este artigo foi reproduzido do original entregue pelo autor, sem edições, correções e considerações feitas pelo comitê técnico deste evento. Outros artigos podem ser adquiridos através da Audio Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA, www.aes.org. Informações sobre a seção brasileira podem ser obtidas em www.aesbrasil.org. Todos os direitos reservados. Não é permitida a reprodução total ou parcial deste artigo sem autorização expressa da AES Brasil.

Subwoofers: Dimensionamento e Empilhamento

Revisão 12 – 05 – 2012 Homero Sette Silva Studio R 04314-130, São Paulo, SP homerosette@hotmail.com

A utilização de subwoofers faz parte do dia a dia dos sonorizadores uma vez que o emprego de caixas capazes de reproduzir as freqüências mais baixas do espectro de áudio, com o nível de SPL desejado, é hoje indispensável em instalações veiculares, domésticas, cinemas e PAs, por exemplo.

Este trabalho aborda o emprego de subwoofers em sistemas de PA (*Public Address*), instalados ao ar livre, enfocando o cálculo do numero de caixas necessárias, em função da quantidade de publico, do SPL desejado a uma dada distância, em função da eficiência e da potência aplicada, e as diferenças ocasionadas por diferentes tipos de empilhamento (montagem).

Nos exemplos será utilizado o modelo SUB21/2800W, projetado pelo Autor para a STUDIO R, com um falante de 21" montado em caixa Band Pass de 6ª ordem.

Subwoofers: Dimensionamento e Empilhamento

Introdução

A utilização de subwoofers faz parte do dia a dia dos sonorizadores uma vez que o emprego de caixas capazes de reproduzir as freqüências mais baixas do espectro de áudio, com o nível de SPL desejado, é hoje indispensável em instalações veiculares, domésticas, cinemas e PAs, por exemplo.

É muito comum surgirem duvidas do tipo:

- Quantos subs são necessários para atender uma determinada quantidade de público?
- Quantos subs preciso levar para garantir um certo SPL a uma determinada distância?
- Qual a melhor maneira de montar esses subs ?

Neste trabalho procuraremos responder a essas e outras dúvidas correlatas, referentes ao emprego de subwoofers em sistemas de PA (*Public Address*), instalados ao ar livre, enfocando o cálculo do numero de caixas necessárias, em função da quantidade de publico, do SPL desejado, a uma dada distância, em função da eficiência e da potência aplicada, e as diferenças ocasionadas por diferentes tipos de empilhamento (montagem).

Nos exemplos serão utilizados o modelo **SUB21/2800W**, projetado pelo Autor para a STUDIO R, com um falante de 21" montado em caixa Band Pass de 6^a ordem.

Esta caixa foi desenvolvida para atender a uma solicitação do Ruy Monteiro, que necessitava de um sub capaz de acompanhar, à altura, o desempenho do amplificador Z16, na época em fase final de projeto. O Ruy sugeriu também o falante 21LW1400, da Eighteen Sound, de 21 polegadas, o que se mostrou uma escolha muito acertada, conforme veremos a seguir.

A Caixa SUB21/2800W

Todos os esforços foram envidados no sentido de conseguir-se uma resposta de baixas freqüências adequada à utilização em sistemas de PA, na via do sub, tendo sido utilizado um volume interno liquido, nas duas câmaras, perfeitamente adequado à resposta desejada adequado.

Alem disso, todo o cuidado foi tomado no sentido de dotar os dutos, de ambas as câmaras, com uma área elevada o suficiente para permitir um escoamento sem perdas dos elevados volumes de ar movimentados pelo cone de 21". Isso é extremamente importante na operação em altas potências pois se o duto não permitir a vazão necessária tudo se passa como se o mesmo estivesse "fechando", o que prejudica acentuadamente a resposta, reduzindo sua eficiência drasticamente. Por isso, os volumes internos do duto são avantajados quando comparados com outros projetos.

Escolhemos uma caixa Band Pass por dois motivos: possibilidade de obtenção de eficiências maiores que a eficiência de referência do falante, o que efetivamente ocorreu, e maior proteção do falante contra intempéries.

O Falante 21LW1400

Na Tabela 1 vemos um resumo dos parâmetros divulgados pela Eighteen Sound referentes ao falante 21LW1400, utilizado em nosso projeto.

	Subwoofer 21LW1400 - Eighteen Sound									
	Especificações G	erais								
Diâme	tro Nominal	533 / 21	mm / pol.							
Impeda	ância Nominal	8	Ohms							
Impeda	ância Mínima @ 24 °C	6,4	Ohms							
Potênc	ia AES	1400	Watts							
Potênc	ia de programa	1600	Watts							
Potênc	ia de Pico (10 ms no máximo)	7000	Watts							
Sensib	ilidade Média de 100 a 500 Hz	99 dB	1 W @ 1 m							
Faixa o	le resposta	24 - 2000	Hz							
Compr	ressão de Pot. @ - 10 dB	0,6	dB							
Compr	ressão de Pot. @ - 3 dB	1,5	dB							
	ressão de Pot. @ - 0 dB	2,3	dB							
Desloc	amento Máximo Linear	± 9,5	mm							
Desloc	amento Máximo Absoluto	± 26	mm							
Diâme	tro da Bobina	100	mm							
Fio da	Bobina	Cobre /	Quadrado							
Forma	da Bobina	Fibra de Vidro								
	Parâmetros Thiele -	- Small								
Fs	Frequência de Ressonância	28	Hz							
$R_{\scriptscriptstyle E}$	Resistência da Bobina	5	Ohms							
S_{D}	Área Efetiva do Cone	0,1662	m^2							
Qts	Fator de Qualidade Total	0,235	-							
Qes	Fator de Qualidade Elétrico	0,242	-							
Qms	Fator de Qualidade Mecânico	9,32	-							
βL	Fator de Força	33,5	$T \cdot m$							
Vas	Volume Equivalente	385	litros							
Mms	Massa do Conjunto Móvel	296	gramas							
ηο	Sensibilidade de Referência	98 dB	1 W @ 1 m							
Tabela	1 – Especificações do falante 21LV	W1400 da Eiş	ghteen Sound.							

Comprovação dos Parâmetros do Falante

O equacionamento abaixo, com os resultados resumidos na Tabela 2, permite a verificação da excelente coerência dos dados fornecidos pelo fabricante, uma vez que a discrepância nos resultados foi insignificante, exceto quanto ao Qms, o que é normal e sem maiores consequências, pois o parâmetro dominante no valor de Qts = 1/(1/Qes + 1/Qms) ≈ Qes é o fator de qualidade elétrico, Qes, pois Qms » Qes.

$$Fs = \frac{1}{2 \cdot \pi \cdot \sqrt{Mms \cdot Cms}} \quad \therefore \quad Cms = \frac{1}{4 \cdot \pi^2 \cdot F_s^2 \cdot Mms} = \frac{1}{4 \cdot \pi^2 \cdot 28^2 \cdot 0,296} = 109,152 \cdot 10^{-6} \frac{m}{N} = 109,152 \frac{\mu m}{N}$$

Para uma temperatura de 20 ° C, 50 % de umidade relativa do ar e 944 mb de pressão atmosférica, temos:

$$\rho = 1{,}1193 \text{ Kg/m}^3 \text{ (densidade do ar)}$$
; $C = 343{,}91 \text{ m/s} \text{ (velocidade de propagação do som no ar)}$

$$Vas = \rho \cdot C^2 \cdot S_D^2 \cdot Cms = 1{,}1193 \cdot 343{,}91^2 \cdot 0{,}1662^2 \cdot 109{,}152 \cdot 10^{-6} = 0{,}38492 \ m^3 = 384{,}92 \ litros$$

$$Qms \ = \ \frac{1}{Rms} \cdot \sqrt{\frac{Mms}{Cms}} \quad \therefore \quad Rms \ = \ \frac{1}{Qms} \cdot \sqrt{\frac{Mms}{Cms}} \ = \ \frac{1}{9,32} \cdot \sqrt{\frac{0,296}{109,152 \cdot 10^{-6}}} \ = \ 5,5875 \ \frac{Kg}{s}$$

Qes =
$$\frac{R_E}{(\beta L)^2} \cdot \sqrt{\frac{Mms}{Cms}} = \frac{5}{(33,5)^2} \cdot \sqrt{\frac{0,296}{109,152 \cdot 10^{-6}}} = 0,2320$$

$$Qts = \frac{\sqrt{\frac{Mms}{Cms}}}{\frac{(\beta L)^2}{R_E} + Rms} = \frac{\sqrt{\frac{0,296}{109,152 \cdot 10^{-6}}}}{\frac{(33,5)^2}{5} + 5,5875} = 0,2264$$

Comp	arando Parâ	imetros 21L	W1400
	Catálogo	Medidos	Erro %
Qts	0,235	0,226	- 3,8
Qes	0,242	0,232	- 4,1
Qms	9,32	5,59	- 40
Vas	385	384,9	- 0,03
SPL_R	98	97,7	- 0,3
Tabela 2	Parâmetro	s de Catálogo e	Medidos.

$$\eta_{\rm O} = \frac{\rho}{2 \cdot \pi \cdot C} \cdot \frac{\left(\beta L\right)^2}{R_{\rm E}} \cdot \left(\frac{S_{\rm D}}{Mms}\right)^2 = \frac{1,1193}{2 \cdot \pi \cdot 343,91} \cdot \frac{\left(33,5\right)^2}{5} \cdot \left(\frac{0,1662}{0,296}\right)^2 = 0,0367 \text{ ou } 3,67 \%$$

$$SPL = 112 \, + \, 10 \cdot log \big(\eta_o \big) = 112 \, + \, 10 \cdot log \big(0,0367 \big) = 112 \, - \, 10 \cdot 1,4353 \, = \, 97,65 \, \simeq \, 98 \, dB \qquad ; \qquad \eta_o = 10^{\left(\frac{SPL - 112}{10} \right)}$$

Na Fig. 1 vemos as respostas de frequência da caixa SUB21/2800W nas condições com o filtro passa altas recomendado (azul) e sem o filtro (vermelho). Alem disso temos, em pontilhado:

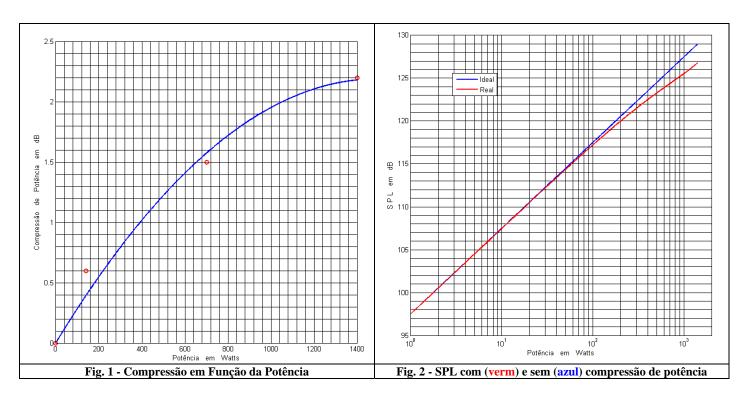
- 1 Sensibilidade de referência do falante (magenta, 97,7 dB);
- 2 Sensibilidade média (40 a 140 Hz) de referência da caixa sem filtro (vermelho, 101,1 dB) e
- 3 Sensibilidade média (40 a 140 Hz) de referência da caixa com filtro (azul, 103,1 dB).

Transformando as sensibilidades em dB, acima, em eficiência, vem:

Eficiência média (40 a 140 Hz) da Caixa sem filtro:
$$\eta_0 = 10^{\left(\frac{SPL - 112}{10}\right)} = 10^{\left(\frac{101,1 - 112}{10}\right)} = 0,0813 \implies 8,13 \%$$

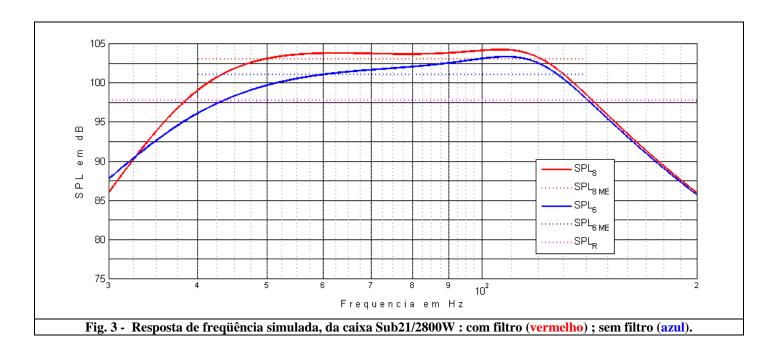
Eficiência média (40 a 140 Hz) da Caixa com filtro: $\eta_0 = 10^{\left(\frac{SPL - 112}{10}\right)} = 10^{\left(\frac{103,1 - 112}{10}\right)} = 0,1288 \implies 12,88 \%$

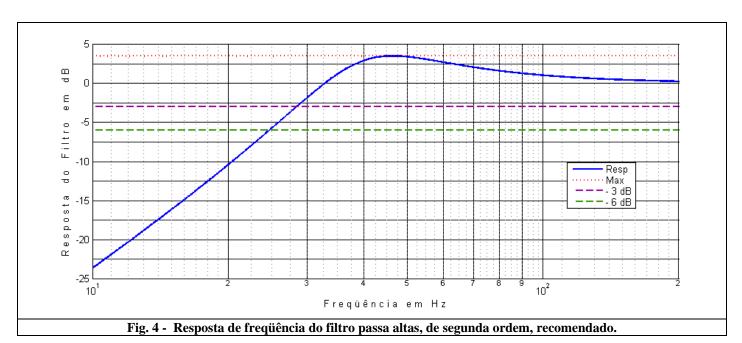
Eficiência média (40 a 140 Hz) da Caixa com filtro:
$$n_0 = 10^{\left(\frac{SPL - 112}{10}\right)} = 10^{\left(\frac{103.1 - 112}{10}\right)} = 0.1288 \implies 12.88 \%$$

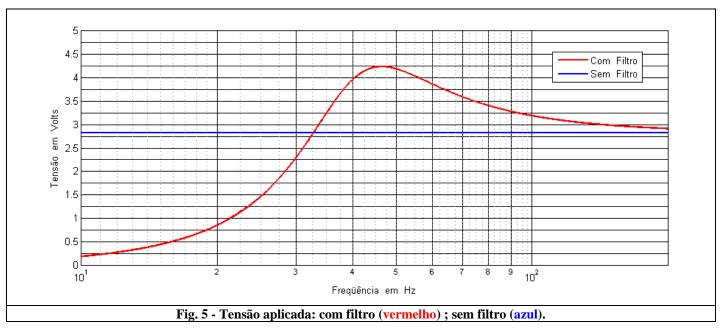

Assim, podemos verificar que as eficiências médias, calculadas no intervalo de 40 a 140 Hz, corresponderam a 8,13 % para a caixa sem filtro e 12,88 para a caixa com filtro, que são valores expressivamente elevados. Levando em conta as informações de compressão de potência, fornecidas na Tabela 4, calculamos na Tabela 3 as novas sensibilidades.

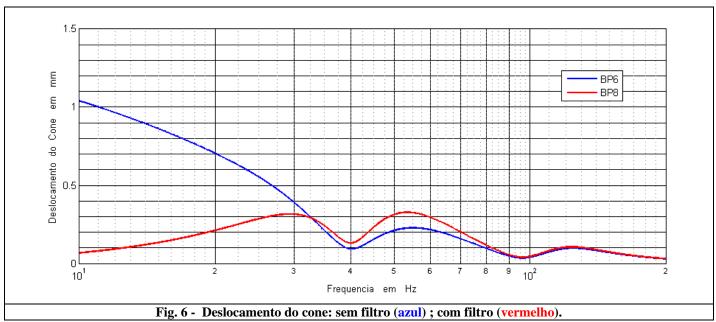
Lembramos que a condição @ - 10 dB corresponde a um décimo da potência máxima sendo - 3dB e 0 dB respectivamente metade da potência máxima e a própria.

Nas especificações do catálogo a sensibilidade da caixa 1 W @ 1 m foi igual a 100 dB, o que corresponde a uma eficiência de 6,31 %.


Compressao	Termica	Sensibilidade em dB					
Condição	Comp.	Sem Filtro	Com Filtro				
@ - 10 dB	0,6 dB	100,5	102,5				
@ - 3 dB	1,5 dB	99,6	101,6				
@ - 0 dB	2,2 dB	98,9	100,9				
Tabela	3 - Comp	ressão e Sensil	bilidade				


Tabela 4 - ESP	ECIFICA	ÇÕES TÉ	CNI	CAS	Sub 21 / 2800	W			
Potência NBR	14	00 Watts		Norma NBR 10303					
Potencia AES	14	00 Watts			Norma Al	ES			
Potência de Programa	16	500 Watts		F	Ruído Rosa dui	ante 2 h			
Potência Musical	28	300 Watts			Fator de Crist	a = 10			
Potência de Pico	70	Máximo de 1	10 ms						
Sensibilidade	100 dB SPL @ 2,83 Volts / 1 m								
Faixa de Resposta	Recome	enda-se o uso c	30 a 2 lo Filtro		Altas – HPF,	abaixo:			
HPF Recomendado		Ff = 40 Hz,	Qf = 1	,4 , Se	egunda Ordem				
Compressão de Potência	Atent 0,6 1,5 2,2	ıação dB	(0)		- 10 - 3 0	dB			
Impedância Nominal		8	3			Ohms			
Impedância Mínima	6,4 Ohms								
Peso		80 Kg							
Dimensões em milímetros	,	620 x 847 x 99	00 (A x	L x C)		mm			




Na Fig. 1, aplicando o método do ajuste de curvas, obtivemos a compressão de potência para qualquer valor compreendido entre 0 e 1400 Watts. Os pontos em vermelho são os valores da compressão térmica fornecidos pelo fabricante do falante.

A Fig. 2 permite comparar o SPL considerando a compressão de potência (vermelho) com o caso ideal (azul), supondo a inexistência da compressão.

Na Fig. 4 vemos a curva de resposta do filtro passa altas recomendado, com Ff = 40 Hz e Qf = 1.4. Este filtro cumpre duas finalidades: 1) aplicar um pequeno reforço nas baixas freqüências e 2) reduzir o deslocamento do cone nas baixas freqüências, protegendo o falante ao trabalhar com valores elevados de potência. A Fig. 5 mostra o efeito do filtro sobre o sinal de áudio, aplicado à caixa, e na Fig. 6 temos os deslocamentos do cone, com e sem filtro, onde podemos ver a importância vital do filtro.

Eficiência e Sensibilidade

A eficiência (ou rendimento) de uma caixa acústica (ou transdutor acústico) é definida como o cociente entre a potência acústica irradiada e a potência elétrica aplicada, ou seja, $\eta_0 = P_A/P_E$. Este valor pode ser expresso em porcentagem ou em dB:

$$\eta_{\scriptscriptstyle O} = \left. P_{\scriptscriptstyle A} \, / \, P_{\scriptscriptstyle E} \right. \quad \ \ \, \vdots \quad \quad \eta_{\scriptscriptstyle O_{\scriptscriptstyle M}} = 100 \cdot P_{\scriptscriptstyle A} \, / \, P_{\scriptscriptstyle E} = 100 \cdot \eta_{\scriptscriptstyle O} \quad \quad \ \ \, \vdots \quad \quad \eta_{\scriptscriptstyle O_{\scriptscriptstyle dB}} = 10 \cdot Log \Big(P_{\scriptscriptstyle A} \, / \, P_{\scriptscriptstyle E} \Big) = 10 \cdot Log \Big(\eta_{\scriptscriptstyle O} \, \Big)$$

η _{ο %}	$\eta_{ m o}$	$10 \cdot Log(\eta_o)$	$SPL_{(1W@1m)} \text{ em dB}$ $112 + 10 \cdot Log(\eta_0)$				
0,1	0,001	- 30	82				
0,5	0,005	- 23	89				
1	0,01	- 20	92				
1,5	0,015	- 18	94				
2	0,02	- 17	95				
2,5	0,025	- 16	96				
3	0,03	- 15	97				
3,5	0,035	- 15,5	96,5				
4	0,04	- 14	98				
100	1	0	112				
Tal	oela 5 – Cor	versão de Eficiência	em SPL a meio espaco.				

 $SPL_{(1W@1m)} = 112 + 10 \cdot Log(\eta_0)$ será utilizada. Na Tabela 5 vemos alguns resultados obtidos na

No caso ideal (inatingível), uma eficiência de 100

%, ou seja, $\eta_0 = 1$, produzirá 1 Watt de potência acústica com 1 Watt de potência elétrica aplicada. Se esta caixa estiver irradiando em meio espaço (potência acústica distribuída na superfície de uma semi esfera, o que ocorre com uma fonte pontual em baffle infinito, ou seja, junto a um plano refletor, como parede ou chão), o nível de pressão acústica, em dB SPL, medido a um 1 metro de distância, será igual a 112 dB. Para outros valores de

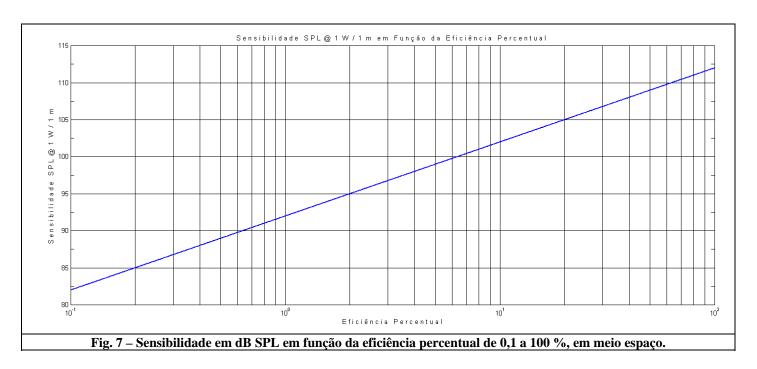
conversão de eficiência em sensibilidade SPL.

Na Tabela 7 temos uma listagem muito mais completa, para esse fim.

A sensibilidade em dB SPL, a 1 W / 1 m, também pode ser obtida através do gráfico mostrado na Fig. 7.

Fator	10 ^N	N	10 x N	Acréscimo
0,01	10^{-2}	- 2	- 20	- 20 dB
0,1	10^{-1}	- 1	- 10	- 10 dB
1	10°	0	0	0 dB
10	10 ¹	1	10	10 dB

Tabela 6 – Acréscimo em dB, na sensibilidade SPL, a 1 W / 1 m, em função do multiplicador da eficiência.


A sensibilidade para um falante (ou caixa acústica) com 2 % de eficiência é igual a 95 dB SPL.

eficiência diferentes de 1 (100 %)

Se a eficiência percentual for 10 vezes maior (20 %) teremos um acréscimo de 10 dB na sensibilidade (105 dB SPL); se a eficiência for 10 vezes menor haverá um decréscimo de 10 dB na sensibilidade (85 dB).

Generalizando, cada vez que a eficiência for multiplicada por uma potência de 10, ou seja, 10^N o SPL será acrescido

Tabela	a 7 – Cor	respondên	icia entre o	os valores	de Sensibi	lidade SPI	em dB e	eficiência _]	percentual	em meio e	espaço.
dB SPL	N _o %	dB SPL	N _o %	dB SPL	N _o %	dB SPL	N _o %	dB SPL	N _o %	dB SPL	N _o %
GD DI L	110 70	ub bi b	110 70	ub bi b	110 70	ub bi L	110 /0	ub bi b	110 70	GD SI L	110 70
82	0,0996	86,6	0,2872	91,2	0,8283	95,8	2,3888	100,4	6.8894	105	19.8692
82,1	0,1019	86,7	0,2872	91,2	0,8283	95,8	2,4444	100,4	7.0498	105.1	20.3320
	0,1013		0,3007		0,8673	95,9	2,5014	-	7.2141	105.1	20.8056
82,2 82,3	0,1043	86,8	0,3077	91,4	0,8875		2,5596	100,6 100,7	7.3821	105.2	21.2902
82,3	0,1007	86,9 87	0,3149	91,5 91,6	0,9082	96,1 96,2	2,6193	100,7	7.5541	105.4	21.7861
82,5	0,1092	-	0,3149		0,9082	•	2,6803	-	7.7300	105.4	22.2936
	0,1117	87,1	0,3222	91,7	0,9294	96,3	2,7427	100,9	7.9101	105.6	22.2930
82,6	0,1170	87,2	0,3297	91,8	0,9310	96,4	2,8066	101	8.0943	105.7	
82,7	0,1170	87,3	0,3374	91,9	0,9752	96,5	2,8720	101,1	8.2829	105.7	23.3442 23.8880
82,8	0,1197	87,4		92		96,6		101,2			
82,9	0,1223	87,5	0,3533	92,1	1,0190	96,7	2,9389	101,3	8.4758	105.9	24.4444
83		87,6	0,3616	92,2	1,0427	96,8	3,0073	101,4	8.6732 8.8752	106	25.0138
83,1	0,1283	87,7		92,3	1,0670	96,9	3,0774	101,5		106.1	25.5965
83,2	0,1313	87,8	0,3786	92,4	1,0919	97	3,1491	101,6	9.0820	106.2	26.1927
83,3	0,1343	87,9	0,3874	92,5	1,1173	97,1	3,2224	101,7	9.2935	106.3	26.8028
83,4	0,1375	88	0,3964	92,6	1,1434	97,2	3,2975	101,8	9.5100	106.4	27.4271
83,5	0,1407	88,1	0,4057	92,7	1,1700	97,3	3,3743	101,9	9.7315	106.5	28.0660
83,6	0,1439	88,2	0,4151	92,8	1,1972	97,4	3,4529	102	9.9582	106.6	28.7197
83,7	0,1473	88,3	0,4248	92,9	1,2251	97,5	3,5333	102,1	10.1901	106.7	29.3887
83,8	0,1507	88,4	0,4347	93	1,2537	97,6	3,6156	102,2	10.4275	106.8	30.0732
83,9	0,1542	88,5	0,4448	93,1	1,2829	97,7	3,6998	102,3	10.6704	106.9	30.7737
84	0,1578	88,6	0,4552	93,2	1,3127	97,8	3,7860	102,4	10.9189	107	31.4905
84,1	0,1615	88,7	0,4658	93,3	1,3433	97,9	3,8742	102,5	11.1733	107.1	32.2240
84,2	0,1653	88,8	0,4766	93,4	1,3746	98	3,9644	102,6	11.4335	107.2	32.9746
84,3	0,1691	88,9	0,4877	93,5	1,4066	98,1	4,0568	102,7	11.6998	107.3	33.7427
84,4	0,1731	89	0,4991	93,6	1,4394	98,2	4,1513	102,8	11.9724	107.4	34.5287
84,5	0,1771	89,1	0,5107	93,7	1,4729	98,3	4,2480	102,9	12.2512	107.5	35.3329
84,6	0,1812	89,2	0,5226	93,8	1,5072	98,4	4,3469	103	12.5366	107.6	36.1560
84,7	0,1854	89,3	0,5348	93,9	1,5423	98,5	4,4482	103,1	12.8286	107.7	36.9981
84,8	0,1897	89,4	0,5472	94	1,5783	98,6	4,5518	103,2	13.1274	107.8	37.8599
84,9	0,1942	89,5	0,5600	94,1	1,6150	98,7	4,6578	103,3	13.4332	107.9	38.7418
85	0,1987	89,6	0,5730	94,2	1,6526	98,8	4,7663	103,4	13.7461	108,0	39,6442
85,1	0,2033	89,7	0,5864	94,3	1,6911	98,9	4,8773	103,5	14.0663	108,1	40,5677
85,2	0,2081	89,8	0,6000	94,4	1,7305	99	4,9909	103,6	14.3939	108,2	41,5126
85,3	0,2129	89,9	0,6140	94,5	1,7708	99,1	5,1072	103,7	14.7292	108,3	42,4795
85,4	0,2179	90	0,6283	94,6	1,8121	99,2	5,2261	103,8	15.0723	108,4	43,4690
85,5	0,2229	90,1	0,6430	94,7	1,8543	99,3	5,3479	103,9	15.4234	108,5	44,4815
85,6	0,2281	90,2	0,6579	94,8	1,8975	99,4	5,4724	104	15.7826	108,6	45,5177
85,7	0,2334	90,3	0,6733	94,9	1,9417	99,5	5,5999	104,1	16.1503	108,7	46,5779
85,8	0,2389	90,4	0,6889	95	1,9869	99,6	5,7303	104,2	16.5265	108,8	47,6628
85,9	0,2444	90,5	0,7050	95,1	2,0332	99,7	5,8638	104,3	16.9114	108,9	48,7730
86	0,2501	90,6	0,7214	95,2	2,0806	99,8	6,0004	104,4	17.3053	109,0	49,9091
86,1	0,2560	90,7	0,7382	95,3	2,1290	99,9	6,1402	104,5	17.7084	109,1	51,0716
86,2	0,2619	90,8	0,7554	95,4	2,1786	100	6.2832	104,6	18.1209	109,2	52,2613
86,3	0,2680	90,9	0,7730	95,5	2,2294	100,1	6.4295	104,7	18.5430	109,3	53,4786
86,4	0,2743	91	0,7910	95,6	2,2813	100,2	6.5793	104,8	18.9749	109,4	54,7243
86,5	0,2807	91,1	0,8094	95,7	2,3344	100,3	6.7326	104,9	19.4169	112,1	100
00,0			,	, , ,	, -	100,0		1,5		,-	
dB SPL	N _o %	dB SPL	N _o %	dB SPL	N _o %	dB SPL	N _o %	dB SPL	N ₀ %	dB SPL	N _o %
	0 /		0 /		0 70		0 /		0 /		0 70

Sensibilidade SPL @ 1 W / 1 m em Função da Eficiência Percentual

Sensibilidade em dB SPL em função da eficiência percentual de 1 a 10 %, em meio espaço e escala linear.

de 10 x N decibéis, conforme vemos na Tabela 6. Esta informação poderá ser usada em conjunto com a Fig. 8 para a obtenção dos valores de SPL com maior resolução: uma caixa com 3,3 % de rendimento produzirá um SPL a 1 W / 1 m de 97 dB; se a eficiência fosse de 0,2 % (fator multiplicador de 0,1) o SPL valeria 97 – 10 = 87 dB.

Devemos lembrar que *eficiência* e *sensibilidade* são quantidades distintas, que se relacionam através da Intensidade Sonora, em Watt por metro quadrado, dada pela equação $I = p_a^2/\rho \cdot C$.

O nível de intensidade sonora SIL, ou seja, a Intensidade sonora (potência acústica distribuída por uma determinada área), expressa em dB, é numericamente igual à pressão sonora expressa em dB SPL. A causa disso deve-se ao fato de que o produto da densidade do ar ρ, pela velocidade do som C, é aproximadamente igual a 400, o quadrado do coeficiente 20, da referência de pressão acústica, 20 μPa.

Dimensionando a Fiação

É muito importante que as caixas Sub21/2800W sejam conectadas aos amplificadores através de cabos com bitola adequada para não introduzirem resistências em série consideráveis, que provocam quedas de tensão, diminuição do fator de amortecimento do falante (elevação do Qts) alem de perda de potência.

Para que o aumento da resistência da fiação não produza alteração significativa no fator de amortecimento, o que modificará o timbre (geralmente para pior), tornando-o menos amortecido, ou seja, mais retumbante, vamos utilizar o critério proposto por Thiele e Small.

Segundo este critério, a resistência máxima admissível que pode ser colocada em série com a caixa não poderá ultrapassar 5 % da impedância nominal da carga.

Se a carga for constituída por um único Sub21/2800W, esta carga será igual a 8 Ohms; com duas em paralelo, 4 Ohms e no caso de 4 caixas em paralelo, 2 Ohms (todos valores nominais).

Na Tabela 8, para as bitolas 10, 12, 14 e 16 AWG, e suas correspondentes milimétricas (4, 2,5, 1,5 e 1 mm), temos as

Resistência Máxima do Fio	AWG	Diâmetro Área		Resistência Ida e Volta	Corrente RMS Max.	Equivalente métrico
5 % da Carga		mm	mm^2	Ω / m	A	mm ²
Carga em Ohms	10	2,588	5,26	0,0066	15	4
8 4 2	12	2,053	3,31	0,0104	9,5	2,5
Res. Max. Do Fio	14	1,628	2,08	0,0166	6	1,5
0,4 0,2 0,1	16	1,291	1,31	0,0264	3,7	1
Tabela 8 - Critério	da resistência	máxima da	fiação (5 %	6 da carga) e t	abelas de fios	AWG e métrica.

respectivas resistências em Ohms por metro. Nesta tabela, já multiplicamos por 2 os valores encontrados nas tabelas de fio, uma vez que precisaremos calcular a resistência total (ida e volta) do lance entre o amplificador e a caixa.

Por exemplo: no caso do fio 1,5 mm (14 AWG), teremos uma resistência a 100 metros de 1,66 Ohms, colocada em série com a caixa.

A Tabela 9 fornece a resistência total do lance do par de fios, para distâncias de 5 a 60 metros, estando sombreados os valores que atendem o critério de 5 % da impedância de carga, para 8 Ohms.

A Tabela 10 fornece a resistência total do lance do par de fios, para distâncias de 5 a 60 metros, estando sombreados os valores que atendem o critério de 5 % da impedância de carga, para 4 Ohms.

Dist.	Carga	de 8 Ohms	- R _{MAX} =	$0,4~\Omega$		Carga	de 8 Ohn	ns - % _{MAX}	_s = 5	Dist.
em	10 AWG	12 AWG	14 AWG	16 AWG		10 AWG	12 AWG	14 AWG	16 AWG	em
metros	4 mm	2,5 mm	1,5 mm	1 mm		4 mm	2,5 mm	1,5 mm	1 mm	metros
	Resis	stência Ida e	e Volta do	Cabo		Queda d	e Tensão e	Fator Amort	ecimento	
		2	2							
5	0,0328	0,0521	0,0828	0,1319		0,41	0,65	1,04	1,65	5
10	0,0656	0,1043	0,1657	0,2638		0,82	1,30	2,07	3,30	10
15	0,0983	0,1564	0,2485	0,3958		1,23	1,95	3,11	4,95	15
20	0,1311	0,2085	0,3313	0,5277		1,64	2,61	4,14	6,60	20
25	0,1639	0,2606	0,4142	0,6596		2,05	3,26	5,18	8,25	25
30	0,1967	0,3128	0,4970	0,7915		2,46	3,91	6,21	9,89	30
35	0,2295	0,3649	0,5798	0,9234		2,87	4,56	7,25	11,54	35
40	0,2622	0,4170	0,6626	1,0554		3,28	5,21	8,28	13,19	40
45	0,2950	0,4692	0,7455	1,1873		3,69	5,86	9,32	14,84	45
50	0,3278	0,5213	0,8283	1,3192		4,10	6,52	10,35	16,49	50
55	0,3606	0,5734	0,9111	1,4511		4,51	7,17	11,39	18,14	55
60	0,3934	0,6256	0,9940	1,5830		4,92	7,82	12,42	19,79	60
Tabel	la 9 - Máxin	nos de 5 % n	a queda de	tensão e no a	aun	nento do fat	or de amort	ecimento e 1	11 % na Pot	ência.

A Tabela 11 fornece a resistência total do lance do par de fios, para distâncias de 5 a 60 metros, estando sombreados os valores que atendem o critério de 5 % da impedância de carga, para 2 Ohms.

Consultando as tabelas acima, vemos que no caso de uma carga de 8 Ohms, a bitola 10 AWG atende todas as distâncias até 60 metros; com 12 AWG podemos chegar até 40 metros. Já a bitola 16 AWG (1 mm) não pode ser usada em nenhuma das distâncias tabeladas.

Para cargas de 2 ou 4 Ohms pode ser preferível utilizar cabos em paralelo, ao invés de um único de bitola maior.

Dist.	Carga	de 4 Ohms	- R _{MAX} =	0,2 Ω		Carga	a de 4 Ohr	ns - % _{MAX}	ς = 5	Dist.
em	10 AWG	12 AWG	14 AWG	16 AWG		10 AWG	12 AWG	14 AWG	16 AWG	em
metros	4 mm	2,5 mm	1,5 mm	1 mm		4 mm	2,5 mm	1,5 mm	1 mm	metros
inetros	Resis	stência Ida e	e Volta do	Cabo		Queda d	e Tensão e	Fator Amort	ecimento	metros
	Ω	Ω	Ω	Ω		%	%	%	%	
5	0,0328	0,0521	0,0828	0,1319		0,82	1,30	2,07	3,30	5
10	0,0656	0,1043	0,1657	0,2638		1,64	2,61	4,14	6,60	10
15	0,0983	0,1564	0,2485	0,3958		2,46	3,91	6,21	9,89	15
20	0,1311	0,2085	0,3313	0,5277		3,28	5,21	8,28	13,19	20
25	0,1639	0,2606	0,4142	0,6596		4,10	6,52	10,35	16,49	25
30	0,1967	0,3128	0,4970	0,7915		4,92	7,82	12,42	19,79	30
35	0,2295	0,3649	0,5798	0,9234		5,74	9,12	14,50	23,09	35
40	0,2622	0,4170	0,6626	1,0554		6,56	10,43	16,57	26,38	40
45	0,2950	0,4692	0,7455	1,1873		7,38	11,73	18,64	29,68	45
50	0,3278	0,5213	0,8283	1,3192		8,20	13,03	20,71	32,98	50
55	0,3606	0,5734	0,9111	1,4511		9,01	14,34	22,78	36,28	55
60	0,3934	0,6256	0,9940	1,5830		9,83	15,64	24,85	39,58	60
Tabela	a 10 - Máxii	mos de 5 %	na queda de	tensão e no	au	mento do fa	tor de amor	tecimento e	11 % na Po	tência.

Dist.	Carga	de 2 Ohms	- R _{MAX} =	: 0,1 Ω		Carga	a de 2 Ohr	ns - % _{MAX}	_x = 5	Dist.
em metros	10 AWG 4 mm	12 AWG 2,5 mm	14 AWG 1,5 mm	16 AWG 1 mm		10 AWG 4 mm	12 AWG 2,5 mm	14 AWG 1,5 mm	16 AWG 1 mm	em metros
	Resis	stência Ida e	e Volta do	Cabo		Queda d	e Tensão e	Fator Amorte	ecimento	
	Ω	Ω	Ω	Ω		%	%	%	%	
5	0,0328	0,0521	0,0828	0,1319		1,64	2,61	4,14	6,60	5
10	0,0656	0,1043	0,1657	0,2638		3,28	5,21	8,28	13,19	10
15	0,0983	0,1564	0,2485	0,3958		4,92	7,82	12,42	19,79	15
20	0,1311	0,2085	0,3313	0,5277		6,56	10,43	16,57	26,38	20
25	0,1639	0,2606	0,4142	0,6596		8,20	13,03	20,71	32,98	25
30	0,1967	0,3128	0,4970	0,7915		9,83	15,64	24,85	39,58	30
35	0,2295	0,3649	0,5798	0,9234		11,47	18,25	28,99	46,17	35
40	0,2622	0,4170	0,6626	1,0554		13,11	20,85	33,13	52,77	40
45	0,2950	0,4692	0,7455	1,1873		14,75	23,46	37,27	59,36	45
50	0,3278	0,5213	0,8283	1,3192		16,39	26,06	41,41	65,96	50
55	0,3606	0,5734	0,9111	1,4511		18,03	28,67	45,56	72,56	55
60	0,3934	0,6256	0,9940	1,5830		19,67	31,28	49,70	79,15	60
Tabela	a 11 - Máxii	mos de 5 %	na queda de	tensão e no	au	mento do fa	tor de amor	tecimento e	11 % na Po	tência.

Quantidade de Público

Uma das preocupações do PAzeiro é determinar o número de caixas de sub necessárias para atender uma determinada *quantidade de público*.

No entanto, a informação *quantidade de publico* não pode ser aplicada diretamente na formulação matemática (lei dos inversos dos quadrados) que caracteriza a propagação esférica.

Alem disso é importante sabermos como está este publico geometricamente distribuído: a arena é quadrada, retangular ou que outra forma possui ?

Assim, deveremos transformar *quantidade de público* em *densidade do publico*, ou seja, no numero de pessoas por metro quadrado.

Exemplo:

Um publico de 10 mil pessoas, com uma densidade de 4 pessoas por metro quadrado, necessitará de uma área mínima de 2500 m². No caso de uma área quadrada teremos 50 m de lado ($\sqrt{2500}$), de modo que 50 m x 50 m dará a área original de 2500 m².

Desse modo nossa preocupação será calcular o SPL a 50 m de distância.

Mas, se o publico anterior ficar distribuído em uma área retangular de 40~m~x~62,5~m, que também corresponde a $2500~m^2$, deveremos calcular o SPL nessas duas distâncias.

Ta	bel	a 9 - Cálculo	da	Área Necess	ár	ia para Acor	noc	lar de 100 a	10	000			
	Pe	essoas em Fu	nçâ	ão da Densid	ad	e de Público	en	n Pessoas / m	2				
	Densidade de Público em Pessoas Por m²												
Número de Pessoas		1 2 3 4											
1 CSSOUS		Área Necessária em m²											
100		100		50		33		25		20			
150		150		75		50		38		30			
200		200		100		67		50		40			
250		250		125		83		63		50			
300		300		150		100		75		60			
350		350		175		117		88		70			
400		400		200		133		100		80			
450		450		225		150		113		90			
500		500		250		167		125		100			
550		550		275		183		138		110			
600		600		300		200		150		120			
650		650		325		217		163		130			
700		700		350		233		175		140			
750		750		375		250		188		150			
800		800		400		267		200		160			
850		850		425		283		213		170			
900		900		450		300		225		180			
950		950		475		317		238		190			
1000		1000		500		333		250		200			

Tabe						-		ar de 1000 a	_	0.000			
	Pessoas em Função da Densidade de Público em Pessoas/m² Densidade de Público em Pessoas Por m²												
Número de		1 2 3 4 5 Área Necessária em m²											
Pessoas													
1000		1000		500		333		250		200			
1500		1500		750		500		375		300			
2000		2000		1000		667		500		400			
2500		2500		1250		833		625		500			
3000		3000		1500		1000		750		600			
3500		3500		1750		1167		875		700			
4000	4	4000		2000		1333		1000		800			
4500	4	4500		2250		1500		1125		900			
5000		5000		2500		1667		1250		1000			
5500		5500		2750		1833		1375		1100			
6000		6000		3000		2000		1500		1200			
6500		6500		3250		2167		1625		1300			
7000		7000		3500		2333		1750		1400			
7500		7500		3750		2500		1875		1500			
8000		8000		4000		2667		2000		1600			
8500		8500		4250		2833		2125		1700			
9000		9000		4500		3000		2250		1800			
9500		9500		4750		3167		2375		1900			
10000	1	10000		5000		3333		2500		2000			

Nas Tabelas 9 a 11 vemos como um público de 100 a 100000 pessoas pode ser acomodado em determinada área, em função da densidade, ou seja, do número de pessoas por m^2 e nas outras três, que se seguem, obteremos a profundidade e a largura da arena.

Tabela	11 - Cálculo da	Área Necessária	para Acomo	dar de 10.000 a 1	00.000							
	Pessoas em Fund	ção da Densidao	le de Público	em Pessoas / m ²								
	D e n s i	Densidade de Público em Pessoas Por m²										
Número de Pessoas	1	1 2 3 4 5										
1 cssous	Área Necessária em m²											
10000	10000	5000	3333	2500	2000							
15000	15000	7500	5000	3750	3000							
20000	20000	10000	6667	5000	4000							
25000	25000	12500	8333	6250	5000							
30000	30000	15000	10000	7500	6000							
35000	35000	17500	11667	8750	7000							
40000	40000	20000	13333	10000	8000							
45000	45000	22500	15000	11250	9000							
50000	50000	25000	16667	12500	10000							
55000	55000	27500	18333	13750	11000							
60000	60000	30000	20000	15000	12000							
65000	65000	32500	21667	16250	13000							
70000	70000	35000	23333	17500	14000							
75000	75000	37500	25000	18750	15000							
80000	80000	40000	26667	20000	16000							
85000	85000	42500	28333	21250	17000							
90000	90000	45000	30000	22500	18000							
95000	95000	47500	31667	23750	19000							
100000	100000	50000	33333	25000	20000							

Ta	Tabela 12 - Profundidade do Público em Áreas de 100 a 1000 m ² Em Função da Largura: 5 , 10 , 15 , 20 e 25												
Área		Largura do Público em metros											
Em	5	10	15	20	25								
m ²		Profundidade do Público em metros											
100	20	10	7	5	4								
150	30	15	10	8	6								
200	40	20	13	10	8								
250	50	25	17	13	10								
300	60	30	20	15	12								
350	70	35	23	18	14								
400	80	40	27	20	16								
450	90	45	30	23	18								
500	100	50	33	25	20								
550	110	55	37	28	22								
600	120	60	40	30	24								
650	130	65	43	33	26								
700	140	70	47	35	28								
750	150	75	50	38	30								
800	160	80	53	40	32								
850	170	85	57	43	34								
900	180	90	60	45	36								
950	190	95	63	48	38								
1000	200	100	67	50	40								

Tabe	Tabela 13 - Profundidade do Público em Áreas de 1.000 a 10.000 m ² Em Função da Largura: 20 , 30 , 40 , 50 e 60											
Área		Largura d	lo	Público e	e m	metros						
Em	20	30		40		50	_	60				
m ²	Profundidade do Público em metros											
1000	50	33		25		20		17				
1500	75	50		38		30		25				
2000	100	67		50		40		33				
2500	125	83		63		50		42				
3000	150	100		75		60		50				
3500	175	117		88		70		58				
4000	200	133		100		80		67				
4500	225	150		113		90		75				
5000	250	167		125		100		83				
5500	275	183		138		110		92				
6000	300	200		150		120		100				
6500	325	217		163		130		108				
7000	350	233		175		140		117				
7500	375	250		188		150		125				
8000	400	267		200		160		133				
8500	425	283		213		170		142				
9000	450	300		225		180		150				
9500	475	317		238		190		158				
10000	500	333		250		200		167				

Tabe	ela 14 - Profundi Em Função	dade do Público da Largura:	em Áreas de 100 , 150 , 20	10.000 a 100.000 00 , 250 e 300	m²							
Área		Largura do Público em metros										
Em	100	100 150 200 250										
m ²	1	Profundidade do Público em metros										
10000	100	67	50	40	33							
15000	150	100	75	60	50							
20000	200	133	100	80	67							
25000	250	167	125	100	83							
30000	300	200	150	120	100							
35000	350	233	175	140	117							
40000	400	267	200	160	133							
45000	450	300	225	180	150							
50000	500	333	250	200	167							
55000	550	367	275	220	183							
60000	600	400	300	240	200							
65000	650	433	325	260	217							
70000	700	467	350	280	233							
75000	750	500	375	300	250							
80000	800	533	400	320	267							
85000	850	567	425	340	283							
90000	900	600	450	360	300							
95000	950	633	475	380	317							
100000	1000	667	500	400	333							

Exemplo: 1000 pessoas podem ser acomodadas em 333 $\,\mathrm{m}^2$, no caso de uma densidade igual 3 pessoas por $\,\mathrm{m}^2$ ou em 250 $\,\mathrm{m}^2$, se a densidade subir para 4.

É preciso cuidado com densidades superiores a 4 pessoas por metro quadrado pois podem gerar situações incontroláveis em caso de tumulto.

Atenuação com a Distância

Para calcular a atenuação em função da distância da fonte sonora utilizaremos a conhecida equação $20 \cdot \text{Log}(r/1) = 20 \cdot \text{Log}(r)$ que dá a atenuação em dB a **r** metros da fonte de sinal, sendo 1 m a distância de referência, equação esta válida para propagação esférica.

Na realidade não se trata de *atenuação*, mas de simples *diluição da energia* com o aumento da área sobre a qual a energia distribui-se.

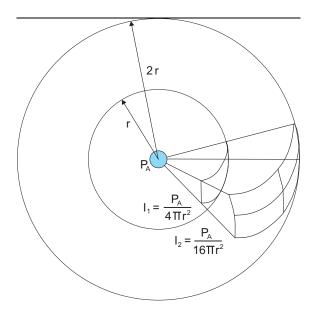
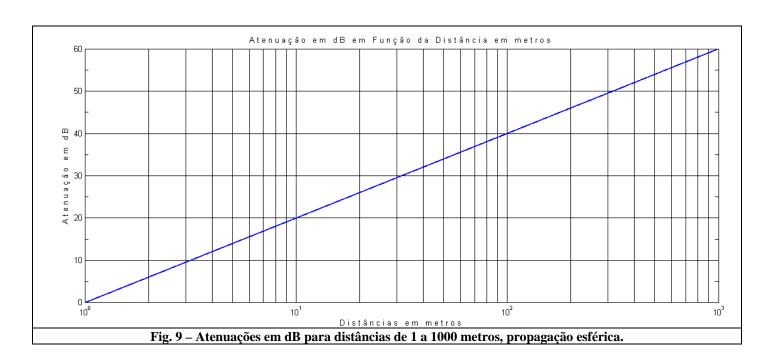


Fig. 7 – Propagação esférica em full space.

Fig. 8 - Sub21/2800W como fonte pontual aproximada.

Distância r em m	Atenuação 20 · Log(r)	Distância r em m	Atenuação 20 · Log(r)			Distância r em m	Atenuaçã 20 · Log (
1	0	10	20 + 0	20		100	40 + 0	40
2	6	20	20 + 6	26		200	40 + 6	46
3	9,5	30	20 + 9,5	29,5		300	40 + 9,5	49,5
4	12	40	20 + 12	32		400	40 + 12	52
5	14	50	20 + 14	34		500	40 + 14	54
6	15,5	60	20 + 15,5	35,5		600	40 + 15,5	55,5
7	17	70	20 + 17	37		700	40 + 17	57
8	18	80	20 + 18	38		800	40 + 18	58
9	19	90	20 + 19	39		900	40 + 19	59
	Tabela 15	- Atenuações e	m dB para dist	âncias e	entr	e 1 e 900 metro	os.	


Dist. (m)	Aten. (dB)	Dist. (m)	Aten. (dB)	Dist. (m)	Aten. (dB)	Dist. (m)	Aten. (dB)
1	0	2	6	4	12	8	18
2	6	4	12	8	18	16	24
3	9,5	6	15,5	12	21,5	24	27,5
4	12	8	18	16	24	32	30
5	14	10	20	20	26	40	32
6	15,5	12	21,5	24	27,5	48	33,5
7	17	14	23	28	29	56	35
8	18	16	24	32	30	64	36
9	19	18	25	36	31	72	37
	T	`abela 16 – A	tenuações em	dB para o dol	bro da distânci	a.	

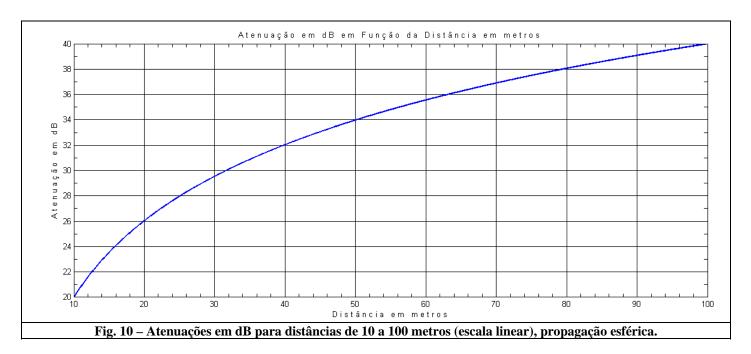

Para frequências a partir de 1 kHz pode ser necessário adicionar as perdas ocasionadas pela absorção de energia pelo ar, principalmente em frequências e distâncias elevadas e baixos valores de umidade relativa. Aqui não serão considerados esses aspectos, que foram discutidos em [1], na bibliografia ao final.

Tabela	17 – Atenua	çõ	es em dB pa	ıra distância:	s ei	ntre 1 e 100	0 metros.
Distância	Atenuação		Distância	Atenuação		Distância	Atenuação
metros	dB		metros	dB		metros	dB
1	0		10	20		100	40
1,5	3,52		15	23,52		150	43,52
2	6,02		20	26,02		200	46,02
2,5	7,96		25	27,96		250	47,96
3	9,54		30	29,54		300	49,54
3,5	10,88		35	30,88		350	50,88
4	12,04		40	32,04		400	52,04
4,5	13,06		45	33,06		450	53,06
5	13,98		50	33,98		500	53,98
5,5	14,81		55	34,81		550	54,81
6	15,56		60	35,56		600	55,56
6,5	16,26		65	36,26		650	56,26
7	16,90		70	36,90		700	56,90
7,5	17,50		75	37,50		750	57,50
8	18,06		80	38,06		800	58,06
8,5	18,59		85	38,59		850	58,59
9	19,08		90	39,08		900	59,08
9,5	19,55		95	39,55		950	59,55
10	20		100	40		1000	60

Na Tabela 15 podemos obter os valores da atenuação em dB para diversas distâncias. Exemplificando, a 2 m da fonte sonora teremos uma atenuação de 6 dB. Assim, o nível de sinal estará 6 dB abaixo, ou seja, atenuado de 6 dB. Supondo um SPL de 100 dB a 1 m, a 2 m teremos 100 - 6 = 96 dB. Notar que atenuações em dB subtraem-se enquanto que ganhos em dB somam-se.

A uma distância de 4 m teremos uma atenuação de 12 dB e o nível do sinal naquela distância será igual a 100 - 12 = 88 dB. Como consequência da lei dos inversos do quadrado a cada dobro da distância teremos um acréscimo na atenuação de 6 dB, conforme vemos na Tabela 16.

Um fato prático, ressaltado na Tabela 15, é o seguinte: para calcular a atenuação a 736 m podemos expressá-la como $100 \times 7,36$. Sendo a atenuação dada por $20 \cdot \text{Log}(r)$, e como $736 = 100 \times 7,36 = 10^2 \times 7,36$, vem: $20 \cdot \text{Log}(736) = 20 \cdot \text{Log}(10^2 \times 7,36) = 20 \cdot \text{Log}(10^2) + 20 \cdot \text{Log}(7,36) = 40 + 17,34 = 57,34 \approx 57 \text{ dB}$, ou seja, basta somarmos 40 à atenuação correspondente a 7 m, que é igual a 17, conforme a Tabela 1, para obtermos 57 dB, que é o valor da atenuação a 736 m, aproximadamente.

Generalizando, devemos expressar o numero como múltiplo de uma potência inteira de 10. O logarítmico da parte exponencial é igual ao expoente, que multiplicado por 20 fornece a primeira parte da atenuação. A segunda parte será igual à 20 vezes o logarítmico da parte fracionária (Tabela 17) Somando as duas partes:

 $73 \text{ m} = 10 \text{ x} 7,3 = 10^{1} \text{ x} 7,3$. Atenuação: 20 x 1 + 17 = 37 dB. O valor 17 dB, obtido na Tabela I, corresponde à atenuação dada por 7 m. Para 7,3 m teríamos 17,27 dB, o que levaria a uma atenuação total de 37,27 dB.

Na Fig. 9 temos um gráfico que mostra os valores da atenuação em função da distância, quando esta variar de 1 a 1000 m. Já a Fig. 10, em escala linear, mostra a mesma informação para um intervalo de 10 a 100 m, permitindo, assim, uma melhor resolução na leitura.

Como exemplo da utilização dos gráficos, entrando na Fig. 10 com 22,5 m obteremos uma atenuação de 27 dB, aproximadamente; já para 40 m, teremos 32 dB e, finalmente, uma atenuação de 38 dB corresponderá a 80 metros.

Na Fig. 11 temos um gráfico capaz de fornecer a atenuação, de um em um dB, e de 1 a 100 metros, com grande resolução, podendo ser utilizada na maioria dos casos.

Fig. 11 - Atenuação com a distância - Propagação esférica. 100

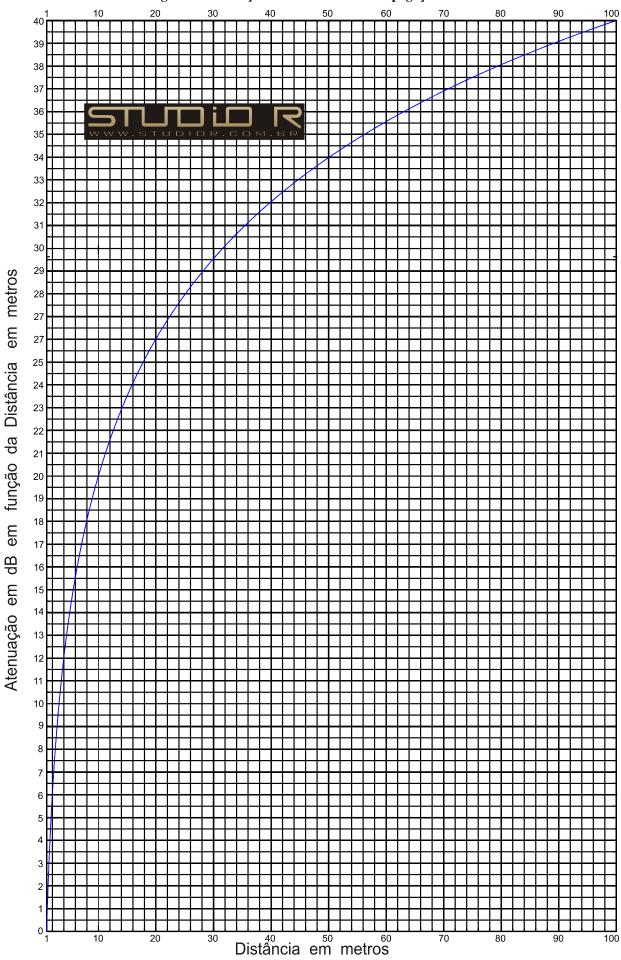
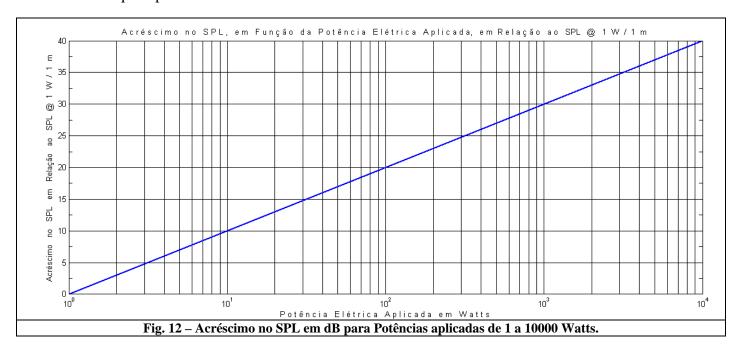
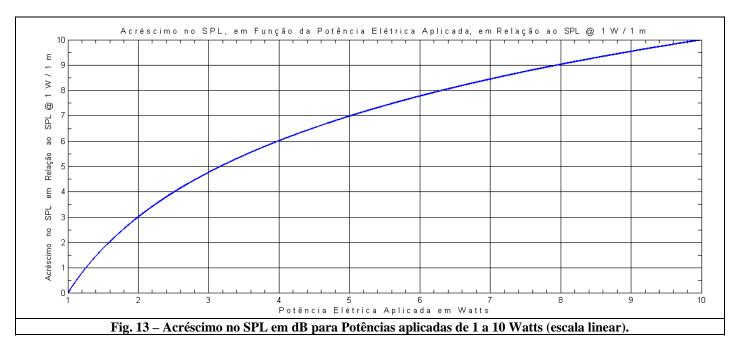


Fig. 11 - Atenuação com a distância - Propagação esférica.


SPL em Função da Potência


Uma vez conhecida a sensibilidade em dB SPL, @ 1W / 1 m, podemos calcular o SPL para qualquer outro valor de potência elétrica $P_{\scriptscriptstyle E}$, aplicada, através da equação abaixo:

$$SPL_{(P_E@1m)} = SPL_{(1W@1m)} + 10 \cdot Log(P_E)$$

Exemplo:

Supondo uma caixa com uma sensibilidade 1 W / 1 m igual a 100 dB SPL, aplicando-se 10 Watts na mesma, esta produzirá um SPL a 1 m igual a 100 + 10 = 110 dB, pois o logaritmo decimal de 10 'e igual a 1. Se nesta caixa aplicarmos 0.5 Watts teremos 100 - 3 = 97 dB, pois o logaritmo decimal de 0.5 'e negativo, e igual a -0.3. Podemos afirmar, também, que o SPL cresce 3 dB com o dobro da potência aplicada e cai 3 dB a cada vez que a potência \'e reduzida à metade.

Assim, se 1000 Watts aplicados em um sistema produzirem 115 dB SPL, dobrando a potência na saída do amplificador, ou seja, aplicando 2000 Watts, teremos um acréscimo de apenas 3 dB no SPL, o que será pouco perceptível auditivamente. Isto se deve ao comportamento não linear de nosso sistema auditivo.

Por esse motivo utilizamos quantidades não lineares, como o decibel, nas medições acústicas, tentando fazer com que nossos ouvidos e nossos instrumentos de medida "ouçam" a mesma coisa.

Para termos a sensação de que o som "dobrou de volume" teríamos que aplicar dez vezes mais potência, o que produziria um acréscimo de 10 dB no SPL, a custa de termos aplicado 10 KW no lugar de 1 KW. A Fig. 12 mostra a obtenção do acréscimo no SPL, com a potência aplicada.

Fator	10 ^N	N	10 x N	Acréscimo
0,01	10^{-2}	- 2	- 20	- 20 dB
0,1	10^{-1}	- 1	- 10	- 10 dB
1	10°	0	0	0 dB
10	10 ¹	1	10	10 dB
100	10 ²	2	20	20 dB
1000	10 ³	3	30	30 dB
10000	10 ⁴	4	40	40 dB

Tabela 18 - Acréscimo em dB, no SPL, em função do multiplicador da potência elétrica aplicada.

A Fig. 13 permite a obtenção desses acréscimos

com maior resolução, na faixa de 1 a 10 Watts, podendo ser estendido para qualquer outro valor através das informações da Tabelas 18 e 19.

P_{E}	$10 \cdot \text{Log}(P_{E})$		P_{E}	$10 \cdot \text{Log}(P_E)$		P_{E}	$10 \cdot \text{Log}(P_{E})$		$P_{\rm E}$	$10 \cdot \text{Log}(P_E)$
1	0		10	10		100	20		1000	30
2	3		20	13		200	23		2000	33
3	4,8		30	14,8		300	24,8		3000	34,8
4	6		40	16		400	26		4000	36
5	7		50	17		500	27		5000	37
6	7,8		60	17,8		600	27,8		6000	37,8
7	8,5		70	18,5		700	28,5		7000	38,5
8	9		80	19		800	29		8000	39
9	9,5		90	19,5		900	29,3		9000	39,5
	Tabela 19	9 _	Acréscimo	em dB, no SPL	, en	n função d	a potência elétri	ca a	aplicada.	

Exemplo:

Aplicando 30 Watts em um sistema com 100 dB SPL de sensibilidade a 1 W / 1 m, teremos um acréscimo de 15 dB o que resultará em um SPL de 115 dB. Se aplicarmos uma potencia 10 vezes maior, ou, seja, 300 Watts, o acréscimo será de 25 dB, ou seja, 10 dB acima do anterior. Aplicando uma potência de 3000 Watts obteremos um acréscimo de 35 dB, ou seja, 20 dB acima do primeiro acréscimo, resultando em um SPL de 135 dB. Podemos afirmar que cada vez que a potência for multiplicada por uma potência de 10, ou seja, 10^N o SPL será acrescido de 10 x N decibéis, conforme vemos na Tabela 18.

SPL em Função da Potência e da Distância

Reunindo as informações anteriores podemos obter o SPL, a uma dada distância r, em função da potência elétrica aplicada, ou o inverso: determinar a potência necessária para que o SPL desejado seja obtido a uma determinada distância. Para isso, poderemos usar as equações abaixo ou seus gráficos ou tabelas correspondentes.

$$\begin{split} SPL_{(P_E \,@\, r \, m)} &= 112 + 10 \cdot Log \big(\eta_O \big) + 10 \cdot Log \big(P_E \big) - 20 \cdot Log \big(r \big) \text{ (Quando somente a eficiência \'e conhecida)} \\ SPL_{(P_E \,@\, r \, m)} &= SPL_{(IW \,@\, l \, m)} + 10 \cdot Log \big(P_E \big) - 20 \cdot Log \big(r \big) \end{aligned} \qquad \text{(Quando o SPL @ 1 W / 1 m está disponível)} \end{split}$$

Exemplo:

Determine o SPL a 10 metros, produzido por uma caixa com eficiência igual a 6,31 %, alimentada por 1000 Watts.

Solução Usando Equações

Como a sensibilidade $SPL_{_{(1W@1\,m)}}$ não foi fornecida, vamos calculá-la:

$$SPL_{(1W@1m)} = 112 + 10 \cdot Log \big(\eta_o \big) = 112 + 10 \cdot Log \big(6,31 \, / \, 100 \big) = 112 + 10 \cdot Log \big(6,31 \, / \, 100 \big)$$

$$SPL_{(1W\,@\,1\,m)} = \,112 + \,10 \cdot Log \big(0,0631\big) = 112 - \,12 \, = \,100 \ dB$$

Se o $SPL_{(IW@1m)}$ tivesse sido fornecido pelo fabricante utilizaríamos a equação abaixo:

$$SPL_{(1000W@10m)} = 100 + 10 \cdot Log(1000) - 20 \cdot Log(10) = 100 + 10 \cdot 3 - 20 \cdot 1 = 100 + 30 - 20 = 110 dB$$

Solução Usando Gráficos

Como a sensibilidade SPL_(IW@1m) não foi fornecida, entrando com 6,3 % no gráfico da Fig. 8 obteremos 100 dB SPL

Para obtermos o SPL_(1000 W @1 m) entraremos com 1000 W na Fig. 12, obtendo 30 dB.

O efeito da diluição da energia com a distância será obtido através da Fig. 11, onde 10 m correspondem a 20 dB (atenuação).

Agora poderemos calcular o SPL resultante:

$$SPL_{(1000W@10\ m)} = SPL_{(1W@1\ m)} + SPL_{(1000W@1\ m)} - SPL_{(10\ m)} = 100 + 30 - 20 = 110\ dB$$

Solução Usando Tabelas

Entrando com 6,28 % na Tabela 7, obteremos 100 dB de sensibilidade SPL_(1W@1m).

Entrando com o Fator de Multiplicação igual a 1000 (pois 1000 W = 1000 x 1 W), na Tabela 18, obteremos o acréscimo $SPL_{(1000\,W@1\,m)}$ igual a 30 dB. Na Tabela 19 obteríamos diretamente este mesmo resultado.

Na Tabela 17, vemos que a 10 metros teremos uma atenuação de 20 dB.

Utilizando os resultados obtidos nas diferentes tabelas podemos calcular o SPL desejado, conforme abaixo:

$$\begin{split} SPL_{(P_E @ r m)} &= SPL_{(1W@1m)} + 10 \cdot Log(P_E) - 20 \cdot Log(r) = 100, 1 + 30 - 20 \approx 110 \text{ dB} \\ SPL_{(1000W@10m)} &= SPL_{(1W@1m)} + SPL_{(1000W@1m)} - SPL_{(10m)} = 100, 1 + 30 - 20 \approx 110 \end{split}$$

SPL em Função do Número de Caixas

Normalmente, em sonorização profissional, não se pode utilizar apenas uma caixa, sendo necessário um empilhamento (array) de diversas, pois o nível de SPL exigido geralmente é impossível de obter-se com uma única. Mesmo em freqüências mais altas, onde drivers de compressão, montados em cornetas, apresentam elevadíssimos níveis de SPL, devemos utilizar diversas unidades, não para obtenção de mais SPL, mas para conseguir-se a cobertura angular necessária para distribuir uniformemente a energia sonora, na área a ser sonorizada.

Nesses dois diferentes casos, comuns ao dia a dia dos sonorizadores estamos diante de duas situações inteiramente distintas de empilhamentos, que seriam: 1) *Caixas Acopladas* e 2) *Caixas Não Acopladas*.

Acoplado x Não Acoplado

Para entendermos os conceitos envolvidos nessas situações, vamos exemplificar com dois casos:

No primeiro, temos duas cornetas, com drivers de compressão, idênticas, ligadas em paralelo, ou seja, recebendo o mesmo sinal de áudio e a mesma potência, operando acima de 2 kHz, alem de direcionadas para um mesmo ponto. Suponhamos que ali tenhamos medido um SPL de 118 dB, com ambas operando simultaneamente. Se uma delas for desligada, observaremos uma queda no nível do sinal de 3 dB, que passará de 118 para 115 dB.

Neste caso diremos que *não houve acoplamento entre as caixas*.

No segundo caso, temos duas caixas de sub, operando de 40 a 120 Hz.

a) As caixas estão muito próximas — Se o SPL medido, com ambas em paralelo, reproduzindo um mesmo sinal, foi igual a 106 dB SPL, desligando uma delas, o nível cairá aproximadamente de 6 dB, indo para algo em torno de 100 dB SPL. Neste caso, diremos que *houve acoplamento*.

b) As caixas estão distantes — Imaginando os subs montados, cada um em um dos lados do palco, alimentados nas mesmas condições anteriores, produzindo 103 dB SPL, medidos a uma distância eqüidistante entre eles (como no house mix), quando um deles for desligado, o SPL cairá para 100 dB. Neste caso, não houve acoplamento entre as caixas.

Para entendermos em que situação acontece (ou não) o acoplamento, comecemos calculando os comprimentos de onda das mais altas freqüências a serem reproduzidas.

No caso do sub woofer (resposta de 40 a 120 Hz), o comprimento de onda de 120 Hz é igual a $\lambda_{\rm 120\,Hz}$ = C / f = 340 / 120 = 2,83 m .

Para a corneta de alta frequência, admitindo 15 kHz como limite superior da resposta, teremos $\lambda_{15\,\text{kHz}}=C$ / f = 340 / 15000 = 2,27 cm

Agora, analisando o comportamento do sub, uma distância entre centros menor ou igual que um comprimento de onda (2,83 m), é uma condição facilmente satisfeita. Um critério mais rígido e seguro seria considerar como limite máximo como λ / 2 ou mesmo λ / 4.

Supondo a largura de cada sub igual a 1 m, a menor distância centro a centro, fisicamente possível, seria de 1 m, que é bem inferior a 2,83 m. Neste caso, o acoplamento está garantido.

Mas, mesmo os graves em 40 Hz ($\lambda_{40\text{Hz}} = \text{C}/\text{f} = 340/40 = 8,5 \text{ m}$) estariam desacoplados a partir de uma distância entre centros maior que 8,5 m. Por isso, em nosso exemplo anterior, dissemos que duas caixas de sub, uma em cada extremo do palco, não estariam acopladas.

No caso das cornetas vemos que um acoplamento em 15 kHz é praticamente impossível, pois suas dimensões são muito maiores que 2,27 cm. Mesmo para a mais baixa freqüência reproduzida o comprimento de onda seria igual $\lambda_{2\,\text{kHz}}=C$ / f = 340 / 2000 = 17 cm. Ainda assim não seria possível o acoplamento com qualquer corneta, a não ser que a altura da boca fosse igual ou menor que 17 cm.

Resumindo, quando duplicamos o numero de caixas em paralelo (acopladas ou não) dobramos a potência aplicada e com isso o SPL crescerá 3 dB.

Se houver acoplamento a eficiência do sistema dobra o que acarreta, por sua vez, outro acréscimo de 3 dB, levando a um ganho total de 3 + 3 = 6 dB, ou seja, 3 dB devido à duplicação da potência e 3 dB por conta da eficiência ter duplicado.

Generalizando, no caso do acoplamento de N_C caixas, a eficiência total será, aproximadamente, a eficiência de uma, multiplicada pelo numero delas, ou seja: $\eta_{O_{N_C}} = N_C \cdot \eta_O$, conforme em $^{[2]}$.

O mesmo pode acontecer com caixas em série, desde que cada uma receba a mesma tensão aplicada nas caixas em paralelo, ou seja, a tensão aplicada na série deverá ser $N_{\rm C}$ vezes o valor daquela aplicada nas caixas em paralelo, ou em uma única.

SPL de N_C Caixas Acopladas, medido a uma distância r.

A eficiência de caixas ou falantes acoplados pode ser considerada, com certa aproximação, como diretamente dependente do numero de unidades acopladas, $N_{_{\rm C}}$, de modo que $\eta_{_{O_{\rm NC}}}=N_{_{\rm C}}\cdot\eta_{_{\rm O}}$.

Assim, dobrando o numero de caixas a eficiência dobra; triplicando o numero de caixas a eficiência triplica e assim por diante.

		Acopl	adas		Desac	copladas
$N_{\rm C}$		$\eta_{O_{N_C}} = N_C \cdot \eta_O$	$20 \cdot \text{Log}(N_{c})$		$\eta_{O_{N_C}} = \eta_{O}$	$10 \cdot \text{Log}(N_{c})$
1		$\eta_{ m o}$	0		$\eta_{ m o}$	0
2		$2 \cdot \eta_{\rm O}$	6		$\eta_{ m o}$	3
3		3·η ₀	9,6		$\eta_{ m o}$	4,8
4		$4 \cdot \eta_{o}$	12		$\eta_{ m o}$	6
5		$5 \cdot \eta_{o}$	14		$\eta_{ m o}$	7
6		6·η ₀	15,6		$\eta_{ m o}$	7,8
7		$7 \cdot \eta_{\rm o}$	17		$\eta_{ m o}$	8,5
8		$8 \cdot \eta_{o}$	18		$\eta_{ m o}$	9
9		9·η ₀	19		$\eta_{ m o}$	9,5
10		10·η _o	20		$\eta_{ m o}$	10
Tabela 2	20 -	Caixas Acopladas	, em série ou para	alel	o, recebendo a	mesma tensão.

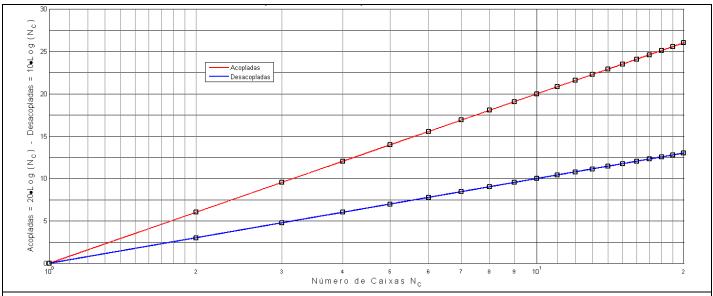


Fig. 14 - Acréscimos em dB para caixas acopladas ou desacopladas, em função do numero de caixas $\,N_{\rm C}\,.$

$$\eta_{\scriptscriptstyle O} = \frac{P_{\scriptscriptstyle A}}{P_{\scriptscriptstyle E}} \qquad \therefore \qquad P_{\scriptscriptstyle A} = \, \eta_{\scriptscriptstyle O} \cdot P_{\scriptscriptstyle E} \qquad \Rightarrow \qquad P_{\scriptscriptstyle A_{\scriptscriptstyle NC}} = \, \eta_{\scriptscriptstyle O_{\scriptscriptstyle NC}} \cdot P_{\scriptscriptstyle E_{\scriptscriptstyle N}} = \, N_{\scriptscriptstyle C} \cdot \eta_{\scriptscriptstyle O} \cdot N_{\scriptscriptstyle C} \cdot P_{\scriptscriptstyle E} = \, N_{\scriptscriptstyle C}^2 \cdot \eta_{\scriptscriptstyle O} \cdot P_{\scriptscriptstyle E} = \, N_{\scriptscriptstyle C}^2 \cdot P_{\scriptscriptstyle A} = \, N_{\scriptscriptstyle C} \cdot P_{\scriptscriptstyle A_{\scriptscriptstyle NC}} = \, N_{\scriptscriptstyle C} \cdot P_{\scriptscriptstyle A_{\scriptscriptstyle NC}} = \, N_{\scriptscriptstyle C} \cdot P_{\scriptscriptstyle C} \cdot P_{\scriptscriptstyle C} = \, N_{\scriptscriptstyle C} = \, N_{\scriptscriptstyle$$

Onde P_E = Potência elétrica aplicada em uma caixa e P_A = Potência acústica produzida por uma caixa.

$$P_{A_{NC}} \,=\, N_C^2 \cdot \eta_O \cdot P_E \,=\, N_C \cdot \eta_O \cdot N_C \cdot P_E$$

Para $N_{\rm C}$ caixas associadas em paralelo ou série, cada uma recebendo a mesma tensão aplicada em uma única, vem:

$$SPL_{(N_C, P_E @rm)} = 112 + 10 \cdot Log(N_C \cdot \eta_O) + 10 \cdot Log(N_C \cdot P_E) - 20 \cdot Log(r)$$

$$SPL_{(N_{C},\,P_{E}\,\,@\,r\,m)} = 112\,\,+\,\,10\cdot Log\!\left(N_{_{C}}\right)\,+\,\,10\cdot Log\!\left(\eta_{_{O}}\right)\,+\,\,10\cdot Log\!\left(N_{_{C}}\right)\,+\,\,10\cdot Log\!\left(P_{_{E}}\right)\,-\,\,20\cdot Log\!\left(r\right)$$

$$SPL_{(N_C, P_E @ r m)} = 112 + 10 \cdot Log(\eta_O) + 20 \cdot Log(N_C) + 10 \cdot Log(P_E) - 20 \cdot Log(r)$$

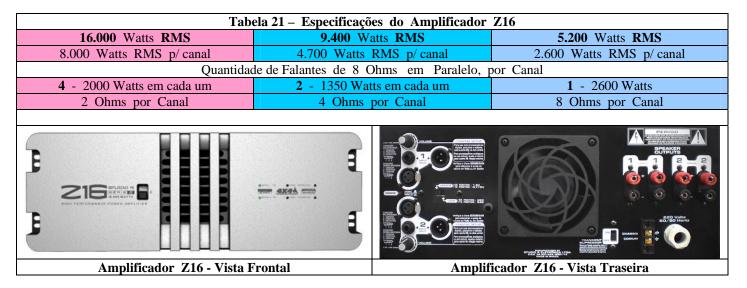
$$SPL_{(N_C, P_E @rm)} = SPL_{(1W@1m)} + 20 \cdot Log(N_C) + 10 \cdot Log(P_E) - 20 \cdot Log(r)$$

Para determinar o numero de caixas N_c , necessário para produzir um nível de SPL desejado, a uma dada distância, cada caixa recebendo P_E Watts, utilizaremos as equações abaixo:

$$20 \cdot Log(N_C) = SPL_{(N_C, P_E @r m)} + 20 \cdot Log(r) - SPL_{(1W @1m)} - 10 \cdot Log(P_E)$$

$$Log\big(N_{_{C}}\big) = \frac{SPL_{(N_{_{C}},\,P_{_{E}}\,@\,r\,m)} - \,SPL_{(1W\,@\,1\,m)}}{20} \, + \, Log\big(r\big) - \frac{Log\big(P_{_{E}}\big)}{2}$$

$$Log(N_{c}) = \frac{SPL_{(N_{c}, P_{E} @r m)} - SPL_{(1W @1m)} - 10 \cdot Log(P_{E})}{20} + Log(r)$$


$$N_{_{C}} \ = \ 10^{\left[\frac{SPL_{(N_{_{C}},P_{_{E}}\,\circledast_{_{F}}m})}{20} + SPL_{(1W\,\circledast_{\,1}m)} - 10\cdot Log(P_{_{E}})}{20} + Log(r)\right]}$$

O Amplificador Z16

A Studio R lançou, no ultimo trimestre de 2011, o amplificador Z16, capaz de fornecer 16 kW totais nos dois canais, com impedâncias nominais mínimas de 2 Ohms, o que permite alimentar 8 falantes de 8 Ohms (4 em paralelo por canal), cada um recebendo 2000 Watts.

As especificações resumidas estão na Tabela 21.

O Z16 é o amplificador ideal para alimentar as caixas Sub21/2800W, e por isso será utilizado nos exemplos.

Empilhando o Sub21/2800W

O Sub21/2800W, em função dos elevados comprimentos de onda existentes em sua faixa de trabalho (ver Tabela – 22, *Freqüência x Comprimento de onda*), pode ser aproximadamente considerado como uma fonte pontual, ou seja, gerador de ondas esféricas.

Desse modo a energia sonora vai ser enviada igualmente para todas as direções, ou seja, omnidirecionalmente.

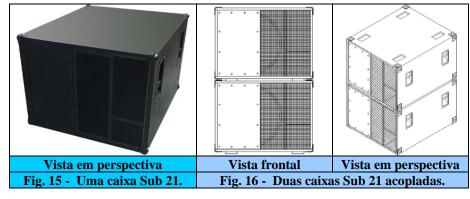
No entanto, cada vez que dobrarmos a distância observaremos uma queda de 6 dB em relação ao nível na posição anterior.

Se a distância for multiplicada por 10 a atenuação aumentará 20 dB.

Desse modo, precisaremos saber quantas caixas serão necessárias para conseguir-se um determinado nível de SPL, a uma distância especificada.

Nas tabelas que se seguem estamos supondo que as caixas estão acopladas entre si, ou seja, montadas próximas umas das outras.

Exemplo 1


Calcule o SPL produzido por uma caixa SUB-21, alimentada com 2000 Watts, nas distancias de:

250 62 170

Figura 17 - Dimensões para empilhamento, em cm.

1, 2, 4, 5, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 e 60 metros.

Os resultados podem ser vistos na Tabela 23.

Exemplo 2

Calcule o SPL produzido por duas caixas SUB-21, acopladas, alimentadas com 2000 Watts aplicados em cada uma (4000 W totais), nas distancias de 1, 2, 4, 5, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 e 60 metros.

Na Tabela 24 vemos os resultados obtidos.

Se as caixas estivessem desacopladas no lugar de $20 \cdot \text{Log}(2) = 6$ teríamos $10 \cdot \text{Log}(2) = 3$.

De modo que basta subtrair 3 dB dos resultados finais mostrados na Tabela 24 para obtermos o SPL correspondente a duas caixas não acopladas.

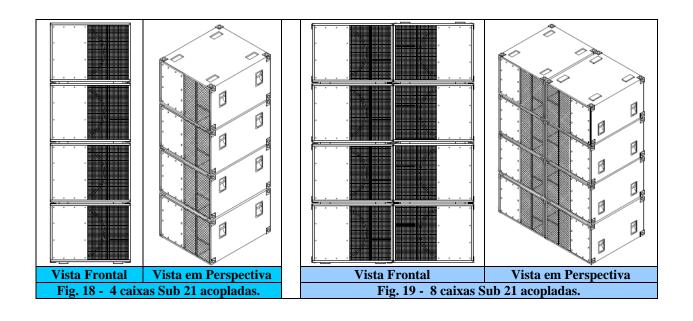

Freq.	Compr	imentos de	e Onda	Distância	Critéri	os de Acopl	amento
em	λ	λ/2	λ/4	d	$d = \lambda$	$d = \lambda / 2$	$d = \lambda / 4$
Hz	((metros)	(metros)	Fr	Hz)	
20	17,35	8,68	4,34	17	20,41	10,21	5,10
30	11,57	5,78	2,89	16	21,69	10,84	5,42
40	8,68	4,34	2,17	15	23,13	11,57	5,78
50	6,94	3,47	1,74	14	24,79	12,39	6,20
60	5,78	2,89	1,45	13	26,69	13,35	6,67
70	4,96	2,48	1,24	12	28,92	14,46	7,23
80	4,34	2,17	1,08	11	31,55	15,77	7,89
90	3,86	1,93	0,96	10	34,70	17,35	8,68
100	3,47	1,74	0,87	9	38,56	19,28	9,64
110	3,15	1,58	0,79	8	43,38	21,69	10,84
120	2,89	1,45	0,72	7	49,57	24,79	12,39
130	2,67	1,33	0,67	6	57,83	28,92	14,46
140	2,48	1,24	0,62	5	69,40	34,70	17,35
150	2,31	1,16	0,58	4	86,75	43,38	21,69
160	2,17	1,08	0,54	3	115,67	57,83	28,92
170	2,04	1,02	0,51	2,5	138,80	69,40	34,70
180	1,93	0,96	0,48	2	173,50	86,75	43,38
190	1,83	0,91	0,46	1,5	231,34	115,67	57,83
200	1,74	0,87	0,43	1	347,01	173,50	86,75
Freqüên	cia x Com	primento	de onda.	Distância	ıs, Comp. de	Onda e Fre	qüências.

Tabela 22 - Comprimentos de onda e critérios de acoplamento.

$SPL_{(1_{C}, 2000 \text{ W @ r m})} = 100 + 0 + 33 - 20 \cdot Log(r)$					$SPL_{(2_{C}, 2000 \text{ W @ r m})} = 100 + 6 + 33 - 20 \cdot Log(r)$					
$SPL_{(1W@1m)} = 100 \text{ dB}$ $20 \cdot Log(1) = 0$				$SPL_{(1W@1m)} = 100 \text{ dB}$ $20 \cdot Log(2) = 6$				Log(2) = 6		
$N_C = 1$	$P_{E} = 2000 \text{ W}$	$10 \cdot \text{Log}(2000) = 33$			$N_C = 2$	$P_{E} = 2000$	W 10·Log		g(2000) = 33	
Distância r em m	Atenuação 20 · Log(r)	SPL ₍₂₀₀	0 W @r m)		Distância r em m	Atenuação 20 · Log(r)		$\mathrm{SPL}_{\left(2_\mathrm{C},2000\;\mathrm{W}\;@\mathrm{r}\;\mathrm{m}\right)}$		
1	0	133 – 0	133		1	0	139	-0	139	
2	6	133 – 6	127		2	6	139	-6	133	
4	12	133 – 12	121		4	12	139	- 12	127	
5	14	133 - 14	119		5	14	139	- 14	125	
8	18	133 – 18	115		8	18	139	- 18	121	
10	20	133 - 20	113		10	20	139	-20	119	
15	23,5	133 - 23,5	109,5		15	23,5	139	-23,5	115,5	
20	26	133 - 26	107		20	26	139	-26	113	
25	28	133 - 28	105		25	28	139	-28	111	
30	29,5	133 - 29,5	103,5		30	29,5	139	-29,5	109,5	
35	31	133 – 31	102		35	31	139	- 31	108	
40	32	133 - 32	101		40	32	139	-32	107	
45	33	133 - 33	100		45	33	139	- 33	106	
50	34	133 – 34	99		50	34	139	− 34	105	
55	35	133 – 35	98		55	35	139	−35	104	
60	35,5	133 - 35,5	97,5		60	35,5		-35,5	103,5	
Tabela 23 - SPL de uma caixa SUB 21 , alimentada com 2000 Watts fornecidos por um amplificador Z16.				Tabela 24 - SPL de 2 caixas Sub 21 acopladas, alimentadas com 2000 Watts fornecidos por um amplificador Z16.						

Exemplo 3

Calcule o SPL produzido por quatro caixas SUB-21, acopladas, alimentadas com 2000 Watts aplicados em cada uma (4000 W totais), nas distancias de 1, 2, 4, 5, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 e 60 m. Na Tabela 25 vemos os resultados obtidos.

$SPL_{(4_{C}, 2000 \text{ W @ r m})} = 100 + 12 + 33 - 20 \cdot Log(r)$					$SPL_{(8_{C}, 2000 \text{ W @ r m})} = 100 + 18 + 33 - 20 \cdot Log(r)$				
$SPL_{(1W@1m)} = 100 \text{ dB}$ $20 \cdot Log(4) = 12$				$SPL_{(1W@1m)} = 100 \text{ dB}$ $20 \cdot Log(8) = 18$				$\log(8) = 18$	
$N_C = 4$	$P_{\rm E} = 2000 \text{ W}$	7 10·Log($10 \cdot \text{Log}(2000) = 33$		$N_C = 8$	$P_{E}=2000$	W	$10 \cdot \text{Log}(2000) = 33$	
Distância r em m	Atenuação 20 · Log(r)	SPL _{(4c, 2}	000 W @ r m)		Distância $r \text{ em m}$ Atenuação $20 \cdot \text{Log}(r)$ $\text{SPL}_{(8_c, 2)}$, 2000 W @r m)		
1	0	145 - 0	145		1	0	151	-0	151
2	6	145 – 6	139		2	6	151	-6	145
4	12	145 – 12	133		4	12	151	- 12	139
5	14	145 – 14	131		5	14	151	– 14	137
8	18	145 – 18	127		8	18	151	- 18	133
10	20	145 - 20	125		10	20	151	-20	131
15	23,5	145 - 23,5	115,5		15	23,5	151	-23,5	127,5
20	26	145 - 26	119		20	26	151	- 26	125
25	28	145 - 28	117		25	28	151	-28	123
30	29,5	145 - 29,5	115,5		30	29,5	151	-29,5	115,5
35	31	145 - 31	114		35	31	151	- 31	120
40	32	145 - 32	113		40	32	151	- 32	119
45	33	145 - 33	112		45	33	151	- 33	118
50	34	145 - 34	111		50	34	151	- 34	117
55	35	145 - 35	110		55	35	151	- 35	116
60	35,5	145 - 35,5	109,5		60	35,5		-35,5	115,5
Tabela 25 - SPL de 4 caixas SUB 21 acopladas, alimentada com 2000 W fornecidos por um amplificador Z16.				Tabela 26 - SPL de 8 caixas Sub 21 acopladas, alimentadas com 2000 Watts fornecidos por um amplificador Z16.					

Exemplo 4

Calcule o SPL produzido por oito caixas SUB-21, acopladas, alimentadas com 2000 Watts aplicados em cada uma (4000 W totais), nas distancias de 1, 2, 4, 5, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 e 60 m. Na Tabela 26 vemos os resultados obtidos.

Se as caixas estivessem desacopladas, no lugar de $20 \cdot Log(8) = 18$ teríamos $10 \cdot Log(8) = 9$. De modo que basta subtrair 9 dB dos resultados finais, mostrados na Tabela 26 para obtermos o SPL correspondente a oito caixas não acopladas.

Exemplo 5

Calcule o numero $N_{\rm C}$, de caixas modelo Sub 21, capazes de produzir um SPL a 50 m igual a 105 dB, sabendo-se que cada caixa receberá 2000 W RMS do amplificador e a sensibilidade SPL 1 W @ 1 m é igual a 100 dB. Considerar as caixas acopladas.

Solução Usando Equações

$$\begin{split} N_{C} &= 10^{\left[\frac{SPL_{(N_{C},P_{E} \circledast r \, m)} - SPL_{(IW \circledast 1 \, m)} - 10 \cdot Log(P_{E})}{20} + Log(r)\right]}} \\ N_{C} &= 10^{\left[\frac{105 - 100 - 10 \cdot Log(2000)}{20} + Log(50)\right]} = 10^{\left[\frac{105 - 100 - 33}{20} + 1,7\right]} = 10^{\left[-\frac{28}{20} + 1,7\right]} = 10^{\left[0,3\right]} = 2 \end{split}$$

Comprovação:

$$\begin{split} & SPL_{\left(N_{C},\, 2000\,\,W\,\,@\,\,r\,\,m\right)} = SPL_{\left(1W\,@\,1\,\,m\right)} \,+\, 20 \cdot Log\!\left(N_{C}\right) \,+\, 10 \cdot Log\!\left(P_{E}\right) \,-\, 20 \cdot Log\!\left(r\right) \\ & SPL_{\left(2_{C},\, 2000\,\,W\,\,@\,\,50\,\,m\right)} = 100 \,+\, 20 \cdot Log\!\left(2\right) \,+\, 10 \cdot Log\!\left(2000\right) \,-\, 20 \cdot Log\!\left(50\right) \\ & SPL_{\left(2_{C},\, 2000\,\,W\,\,@\,\,50\,\,m\right)} = 100 \,+\, 6 \,+\, 33 \,-\, 34 \,=\, 105 \,\,dB \end{split}$$

Solução Usando Tabelas

Os valores necessários para resolver as equações abaixo podem ser obtidos nas tabelas fornecidas:

$$\begin{split} & SPL_{(N_C, P_E @r m)} = SPL_{(lW@l m)} + 10 \cdot Log(N_C^2 \cdot P_E) - 20 \cdot Log(r) \\ & SPL_{(N_C, P_E @r m)} = SPL_{(lW@l m)} + 20 \cdot Log(N_C) + 10 \cdot Log(P_E) - 20 \cdot Log(r) \end{split}$$

Na Tabela 17 vemos que a atenuação para 50 metros é igual a 34 dB.

Conforme informação do fabricante o $SPL_{(1W@1m)}$ do Sub 21 vale 100 dB. Como desejamos 105 SPL a 50 m torna-se necessário que a 1 m tenhamos 105 + 34 = 139 dB, para compensar a atenuação com a distância.

Etapa	Procedimento	Exemplo				
1	Obter a <i>atenuação em dB</i> , correspondente à distância <i>r</i> , na Tabela 17.	50 m, 34 dB				
2	Somar a <i>atenuação em dB</i> com o SPL desejado à distância r para obter o <i>SPL necessário a 1 m</i> .	105 + 34 = 139 dB				
3	Obter o acréscimo necessário em dB subtraindo do SPL necessário a 1 m a sensibilidade SPL 1 W @ 1 m.	139 - 100 = 39 dB				
4	Obter, na Tabela 19, o <i>acréscimo em dB produzido pela potência P_E</i> aplicada em uma caixa.	33 dB				
5	Calcular o acréscimo no SPL a ser dado pelo numero de caixas N_C , subtraindo do acréscimo necessário em dB o acréscimo em dB produzido pela potência P_E aplicada em uma caixa.	39 - 33 = 6 dB				
6	Entrar com o <i>acréscimo no SPL a ser dado pelo numero de caixas</i> N_C , na Tabela 20, escolhendo o valor inteiro superior, mais próximo.	Nc = 2				
	Tabela 27 – Obtenção do numero de caixas N_C para atingir determinado SPL a r metros, usando tabelas .					

Sendo a sensibilidade 1 W @ 1 m igual a 100 dB, deveremos aplicar uma potência $N_C^2 \cdot P_E$ capaz de produzir um acréscimo no SPL a 1 m igual a 139 – 100 = 39 dB.

Este acréscimo, dado por $10 \cdot \text{Log}(N_C^2 \cdot P_E)$ é composto por duas parcelas: $20 \cdot \text{Log}(N_C)$ e $10 \cdot \text{Log}(P_E)$.

Como a potência por caixa deve ser igual a 2000 W, isso equivale a um acréscimo por caixa, no SPL, igual a 33 dB, conforme vemos na Tabela 19, pois $10 \cdot \text{Log}(2000) = 33 \text{ dB}$.

Assim, dos 39 dB que precisávamos já foram conseguidos 33 dB, faltando obter 39-33=6 dB, que corresponde a $20 \cdot \text{Log}(N_{\text{C}})$. Na Tabela 20 vemos que 6 dB corresponde exatamente a $N_{\text{C}}=2$, ou seja, exatamente duas caixas.

Quando o valor de N_c obtido for fracionário, escolhe-se o inteiro imediatamente superior.

Solução Usando Gráficos

Os valores necessários para resolver as equações abaixo podem ser obtidos nos gráficos fornecidos:

$$SPL_{(N_{C}, P_{E}@r m)} = SPL_{(1W@1m)} + 10 \cdot Log(N_{C}^{2} \cdot P_{E}) - 20 \cdot Log(r)$$

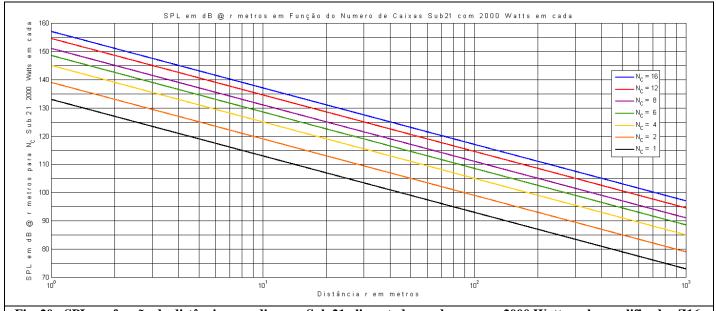
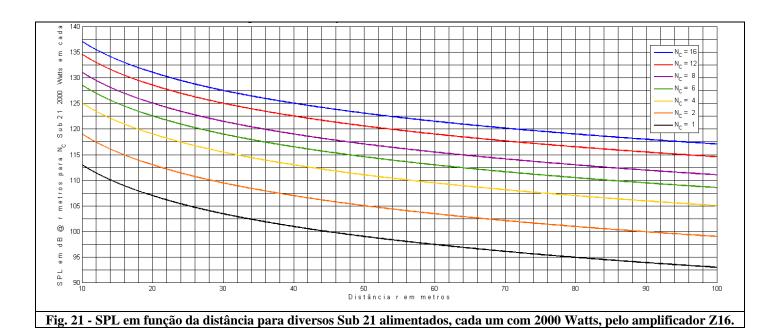
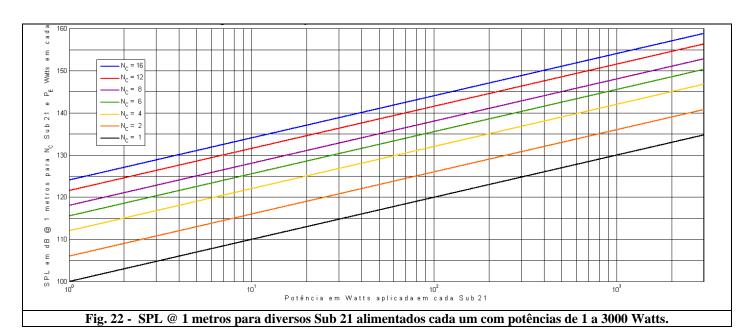
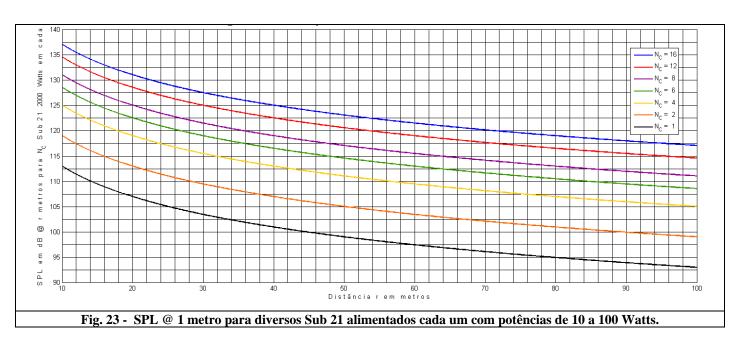
$$SPL_{(N_{C}, P_{E}@r m)} = SPL_{(1W@1m)} + 20 \cdot Log(N_{C}) + 10 \cdot Log(P_{E}) - 20 \cdot Log(r)$$

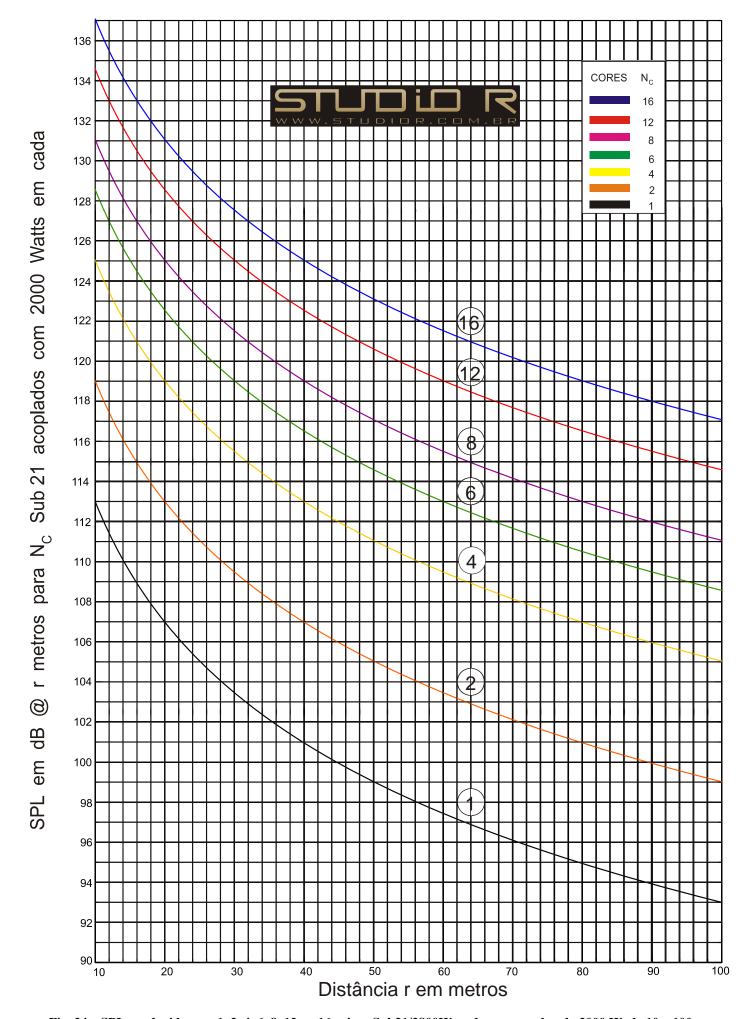
Etapa	Procedimento	Exemplo				
1	Obter a <i>atenuação em dB</i> , correspondente à distância r , na Figura 11.	50 m, 34 dB				
2	Somar a <i>atenuação em dB</i> com o SPL desejado à distância r para obter o SPL necessário a 1 m.	105 + 34 = 139 dB				
3	Obter o acréscimo necessário em dB subtraindo do SPL necessário a 1 m a sensibilidade SPL 1 W @ 1 m.	139 - 100 = 39 dB				
4	Obter, na Fig. 12 o acréscimo em d B produzido pela potência P_E aplicada em uma caixa.	33 dB				
5	Calcular o acréscimo no SPL a ser dado pelo numero de caixas N_C , subtraindo do acréscimo necessário em dB o acréscimo em dB produzido pela potência P_E aplicada em uma caixa.	39 - 33 = 6 dB				
6	Entrar com o <i>acréscimo no SPL a ser dado pelo numero de caixas</i> N_C , na Figura 14, arredondando para o valor inteiro superior, mais próximo.	Nc = 2				
	Tabela 28 – Obtenção do numero de caixas N _C para atingir determinado SPL a r metros, usando gráficos .					

Caixas Sub 21 Recebendo 2000 W

Particularizando a potência aplicada como 2000 Watts, caso típico para o Z16, poderemos representar em um gráfico os valores do SPL, para diversos números de caixa, N_c :

$$\begin{split} & SPL_{(N_C,\,P_E\,@\,r\,m)} = SPL_{(IW\,@\,l\,m)} + 10 \cdot Log\!\left(N_C^2 \cdot P_E\right) - 20 \cdot Log\!\left(r\right) \\ & SPL_{(N_C,\,2000W\,@\,r\,m)} = 100 \, + \, 20 \cdot Log\!\left(N_C\right) + 10 \cdot Log\!\left(2000\right) - \, 20 \cdot Log\!\left(r\right) \\ & SPL_{(N_C,\,2000W\,@\,r\,m)} = 100 \, + \, 20 \cdot Log\!\left(N_C\right) + \, 33 \, - \, 20 \cdot Log\!\left(r\right) \\ & SPL_{(N_C,\,2000W\,@\,r\,m)} = 133 \, + \, 20 \cdot Log\!\left(N_C\right) - \, 20 \cdot Log\!\left(r\right) \end{split}$$


Fig. 20 - SPL em função da distância para diversos Sub 21 alimentados, cada um com 2000 Watts, pelo amplificador Z16.

$$\begin{split} SPL_{(N_{C}, P_{E} @ 1 m)} &= SPL_{(IW@1m)} + 10 \cdot Log(N_{C}^{2} \cdot P_{E}) - 20 \cdot Log(r) \\ \\ SPL_{(N_{C}, P_{E} @ 1 m)} &= SPL_{(IW@1m)} + 10 \cdot Log(N_{C}^{2} \cdot P_{E}) = SPL_{(IW@1m)} + 20 \cdot Log(N_{C}) + 10 \cdot Log(P_{E}) \\ \\ SPL_{(N_{C}, P_{E} @ 1 m)} &= 100 + 20 \cdot Log(N_{C}) + 10 \cdot Log(P_{E}) \end{split}$$

 $Fig.\ 24-SPL\ produzido\ por\ 1,\,2,\,4,\,6,\,8,\,12\ ou\ 16\ caixas\ Sub21/2800W,\ cada\ uma\ recebendo\ 2000\ W,\ de\ 10\ a\ 100\ m.$

Caixas Não Acopladas

Conforme podemos comprovar nas tabelas anteriores, todas as vezes que o numero de caixas foi dobrado, o SPL cresceu 6 dB, pois as mesmas estavam acopladas.

No entanto, se colocarmos oito caixas de cada lado do palco, fazendo medições em um ponto equidistante, como na linha do *house mix*, em direção ao palco, provavelmente observaremos um acréscimo de apenas 3 dB, pois a distância entre os dois grupos de caixas foi grande demais para um acoplamento significativo.

Exemplo: 8 caixas Sub21/2800W, na frente do palco, alinhadas com o house mix, dele distando 30 m, produziriam 121,5 dB SPL. Se acrescentássemos mais 8 caixas naquela posição, o nível subiria para 127,5 dB. Se usássemos 16 caixas, não mais no centro do palco, mas 8 em cada lado do palco, teríamos um SPL de no máximo 124,5 a 30 m, na linha do *house mix* perpendicular ao palco, supondo total desacoplamento.

Se duas ou mais caixas estiverem distantes entre si (centro a centro) meio comprimento de onda, estarão fortemente acopladas; se esta distância for igual ou menor que $(\lambda/4)$, o acoplamento será ainda mais intenso e se distarem um comprimento de onda, o acoplamento será o mais fraco de todos.

Na tabela 22 temos as distâncias entre as caixas, para obtermos as freqüências mais altas até onde ocorrerá o acoplamento, segundo os critérios λ , $\lambda/2$ e $\lambda/4$.

Na primeira parte da Tabela 22, temos para freqüências de 20 a 200 Hz, seus respectivos comprimentos de onda. Assim, para 40 Hz o comprimento de onda (λ) é igual a 8,68 m, meio comprimento de onda (λ /2) corresponde a 4,34 m e para (λ /4) teremos 2,17 metros. A aplicação prática disso é a seguinte: se o critério de acoplamento for distâncias centro a centro iguais ou menores que um comprimento de onda (λ), para freqüências iguais ou menores que 40 Hz, as caixas estarão acopladas desde que distantes 8,68 m ou menos. Caso o critério de acoplamento seja λ /2, a distância deverá ser igual ou menor que 4,37 metros.

No caso de 120 Hz, ou seja, o triplo de 40 Hz, as distâncias para acoplamento serão três vezes menores: 2,89, 1,45 e 0,72 m, respectivamente, para os critérios de λ , $\lambda/2$ e $\lambda/4$.

Na segunda parte da tabela 22, temos distâncias de 1 a 17 m e as respectivas freqüências correspondentes aos critérios de acoplamento de λ , $\lambda/2$ e $\lambda/4$ comprimentos de onda.

Por exemplo: uma distância centro a centro de 3 m proporcionará um acoplamento até 116 Hz, se o critério for $d = \lambda$, mas apenas até a metade, ou seja, 58 Hz para $d = \lambda / 2$, ou 29 Hz para $d = \lambda / 4$.

Baixas freqüências (maiores comprimentos de onda são mais facilmente acopláveis que as freqüências mais elevadas.

Cuidados Físicos com o Empilhamento

Sempre que as caixas Sub21/2800W forem empilhadas todo o cuidado deve ser tomado por parte do usuário para garantir **a estabilidade** das mesmas, evitando tombamentos que podem produzir lesões graves nas pessoas próximas. Para isso utilize cintas e/ou andaimes tubulares adequados.

Pense da seguinte forma:

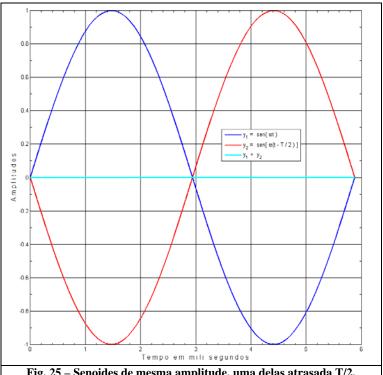
- Caso algo se desprenda do palco (ou de outra estrutura) e caia sobre as caixas, isso irá derrubá-las ?
- Um vento inesperado pode fazer as caixas tombar ?
- Havendo, pelo menos, uma resposta afirmativa a essas perguntas, reforce a estrutura de suporte das caixas!

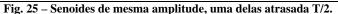
Características Acústicas do Empilhamento

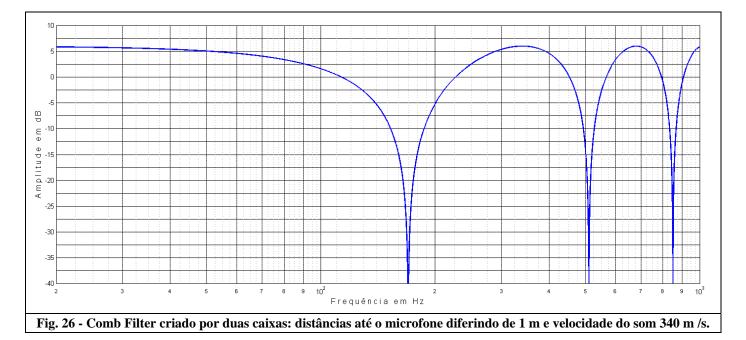
Comb Filter

Quando o ouvinte não está em uma posição eqüidistante entre duas caixas os sinais sonoros de cada uma chegarão com uma diferença de tempo (delay), em segundos, dada por $T_D = d/C$, sendo d a diferença em metros entre as distâncias percorridas pelos dois sinais e C a velocidade do som no ar, em m/s.

Este atraso pode ser convertido em um ângulo de fase $\,\theta_{\scriptscriptstyle D} = \,\omega \cdot T_{\scriptscriptstyle D} \,=\, 2 \cdot \pi \cdot f \cdot T_{\scriptscriptstyle D}\,.$


Quando a diferença de tempo entre os dois sinais for igual a meio período (T/2, ou seus múltiplos impares) isso equivalerá a uma diferença de fase igual a 180 graus, o que provocará a completa anulação de ambos no ponto de audição (ou medição), se chegarem com a mesma amplitude. Esta situação está mostrada na Fig. 25.


Se os sinais estiverem em fase, ou defasados de um numero inteiro de períodos, a soma terá o dobro da amplitude.


Essa irregularidade na resposta recebe o nome de Comb filter (pente), como vemos na Fig. 26.

Índice	Freqüênc	Freqüências em Hz				
	Mínimos	Máximos				
N	$(N-0,5)\cdot C/d$	N·C/d				
1	170	340				
2	510	680				
3	850	1020				

Tabela 29 - Frequências de nulo e de pico, até 1 kHz, do Comb Filter criado por uma distância de 1 m e C = 340 m/s.

Na Tabela 29, que resume o efeito pente, vemos que quanto maior for a diferença entre as distâncias percorridas pelos sinais (maior atraso), mais baixa será a frequência do primeiro nulo.

Por esse motivo devemos empilhar as caixas de modo que as contribuições de cada uma percorram caminhos os mais próximos possíveis para o *comb filt*er ocorrer fora da faixa de trabalho daquela via.

Um empilhamento vertical de caixas produz muito menos efeito pente no plano horizontal (audiência), na região do sub, do que caixas disposta horizontalmente, uma vez que as diferenças nas distâncias percorridas pelas ondas sonoras até os ouvintes são menores no primeiro caso.

Coberturas Vertical e Horizontal

Uma caixa Sub21/2800W, irradiando em full space, ou seja, pendurada a grande altura, apresentará um diagrama de irradiação quase perfeitamente esférico nas frequências de sua faixa de trabalho.

Empilhando duas caixas verticalmente (uma sobre a outra) haverá um achatamento das esferas originais, resultando em algo como uma elipse, com o eixo maior na horizontal, conforme a Fig. 27.

Isso significa que o *empilhamento vertical* estreita o ângulo de *cobertura vertical* e alarga o *horizontal*, o que é o ideal para o publico distribuído na horizontal, o que normalmente acontece na maioria dos casos.

Note que este é o empilhamento dos line arrays, exatamente por esse motivo. No entanto, se distribuirmos as caixas horizontalmente, obteremos o oposto: alargamento do ângulo de cobertura vertical e estreitamento da cobertura horizontal, o que não é adequado para um público na horizontal.

O que afirmamos acima poderá ser observado nas figuras que seguem, criadas com o software gratuito RAY-END [3], anteriormente deno-

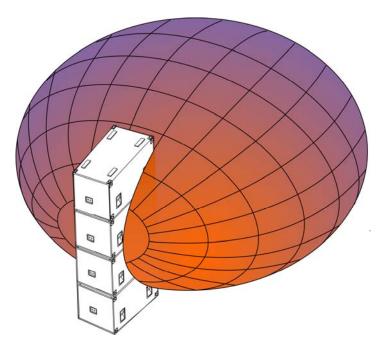
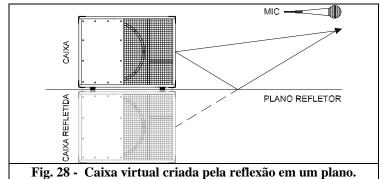


Fig. 27 - Efeito do empilhamento na dispersão.

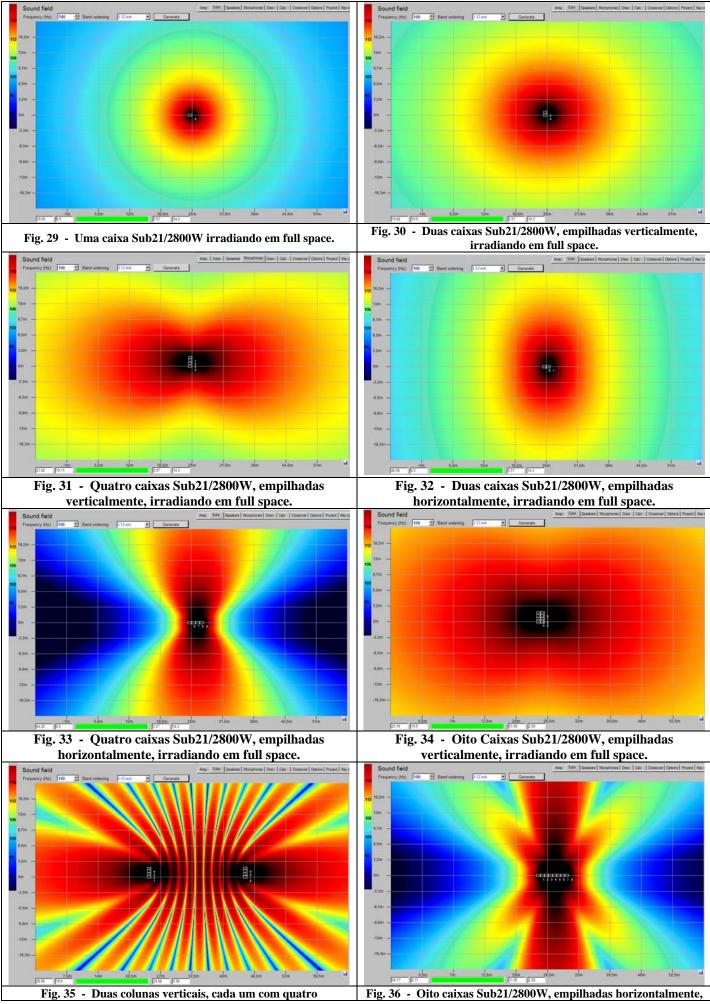
minado GPA, desenvolvido no Chile, modelando subwoofers como fontes pontuais. Este software foi usado para gerar os gráficos de cobertura das referências [4] e [5], na bibliografia.

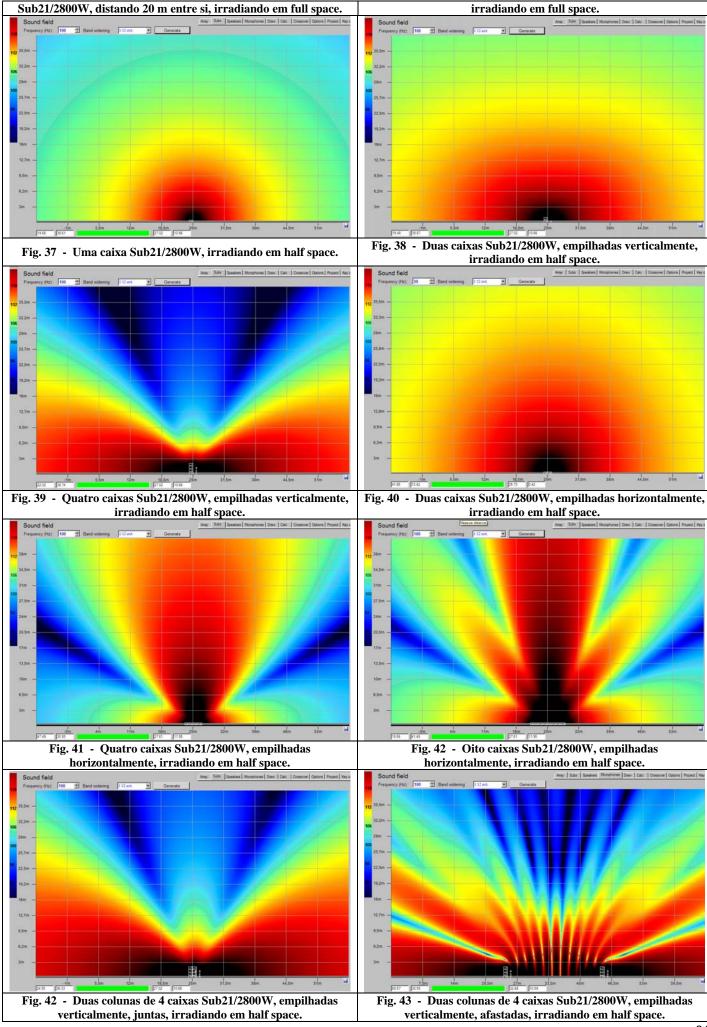
Na Fig. 29 vemos que um único subwoofer irradiando em full space, ou seja, longe de qualquer plano refletor, apresentará uma dispersão omnidirecional. Duas caixas empilhadas na vertical provocam ligeiro achatamento na cobertura, conforme a Fig. 30, achatamento esse que se torna bastante pronunciado com o empilhamento vertical de quatro caixas, mostrado na Fig. 31.

Nas Figs. 32 e 33 vemos o que acontece quando o empilhamento é feito na horizontal: a cobertura vertical alonga-se e a horizontal estreita-se. Podemos observar que girando um gráfico de 90 graus as propriedades da cobertura alternam-se de forma coerente.


A Fig. 34 mostra que dois grupos verticais de quatro caixas cada um, posicionados lado a lado, produzem uma cobertura horizontal adequada. No entanto, se as colunas forem montadas distanciadas entre si, como uma à esquerda e a outra à direita do palco, haverá uma excessiva presença de comb filter, exceto para os ouvintes situados na linha do centro, eqüidistante das duas colunas, conforme vemos na Fig. 35.

Na Fig. 36 vemos o acentuado estreitamento na cobertura horizontal provocado pelo empilhamento horizontal de oito subs. No entanto, se o empilhamento fosse vertical, a cobertura horizontal seria excelente (girar a figura de 90 graus).


Reflexão


Outro aspecto importante é a reflexão criada pelo chão ou quaisquer outros planos refletores próximos. Imaginando uma fonte pontual (irradiação esférica) colocada no chão, metade da energia irradiada (a que iria para baixo) é refletida pelo chão, duplicando a energia irradiada.

Tudo se passa como se existissem duas caixas: uma real (acima) e outra virtual (abaixo), conforme vemos na Fig. 28.

Nas Figs. 37 a 43 temos diversos exemplos de empilhamento, tanto vertical quanto horizontal, onde foi levada em conta a reflexão especular causada pelo piso,

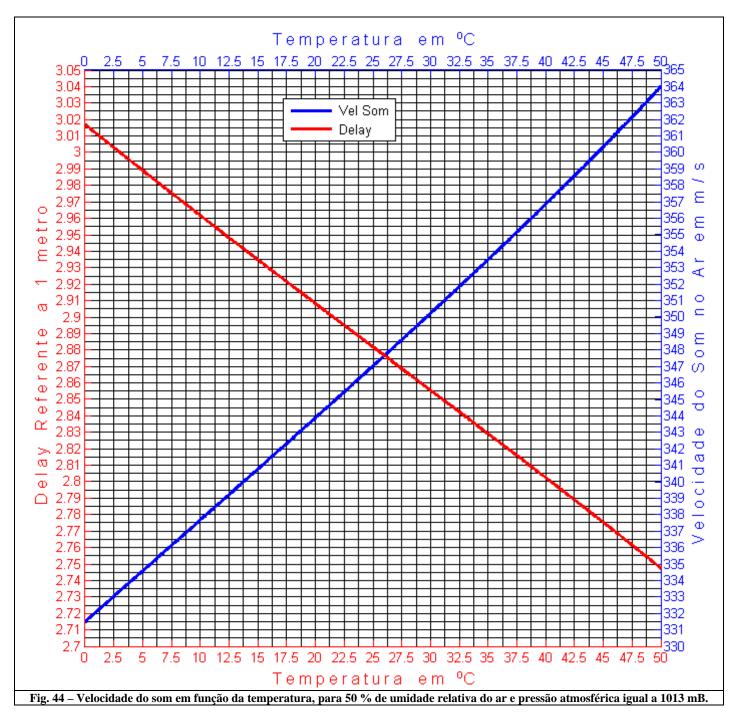
Delay

A aplicação de delay possibilita a obtenção de novos resultados no empilhamento, resolvendo alguns problemas.

O delay pode ser gerado eletronicamente, por um processador de sinais, ou obtido fisicamente, distanciando as caixas de uma distância d. Como o som propaga-se no ar a uma velocidade C, em metros por segundo, o tempo gasto para percorrer uma distância d, ou seja, o tempo de retardo (delay) será dado por $T_D = d/C$. Para uma distância d = 1 metro, e supondo o som propagando-se a 350,2 m/s, teremos um retardo de $T_D = 1/350, 2 = 0,00286$ segundos ou 2,86 milissegundos. Em outras palavras, podemos dizer que como o som gasta aproximadamente 2,9 ms para percorrer uma distância de 1 metro, ou seja,1 m introduz um retardo de 2,9 ms. No entanto, a velocidade do som no ar depende da temperatura, que neste caso foi igual a 30 graus.

Na Tabela 30 temos a velocidade de propagação do som e o delay, em função da temperatura, variando esta de 20 a 40 graus centígrados, para 50 % de umidade relativa do ar e 1013 mB de pressão atmosférica e distâncias correspondentes às dimensões da caixa Sub21/2800W. Como podemos constatar a velocidade do som aumenta com a temperatura, reduzindo o delay criado por uma determinada distância.

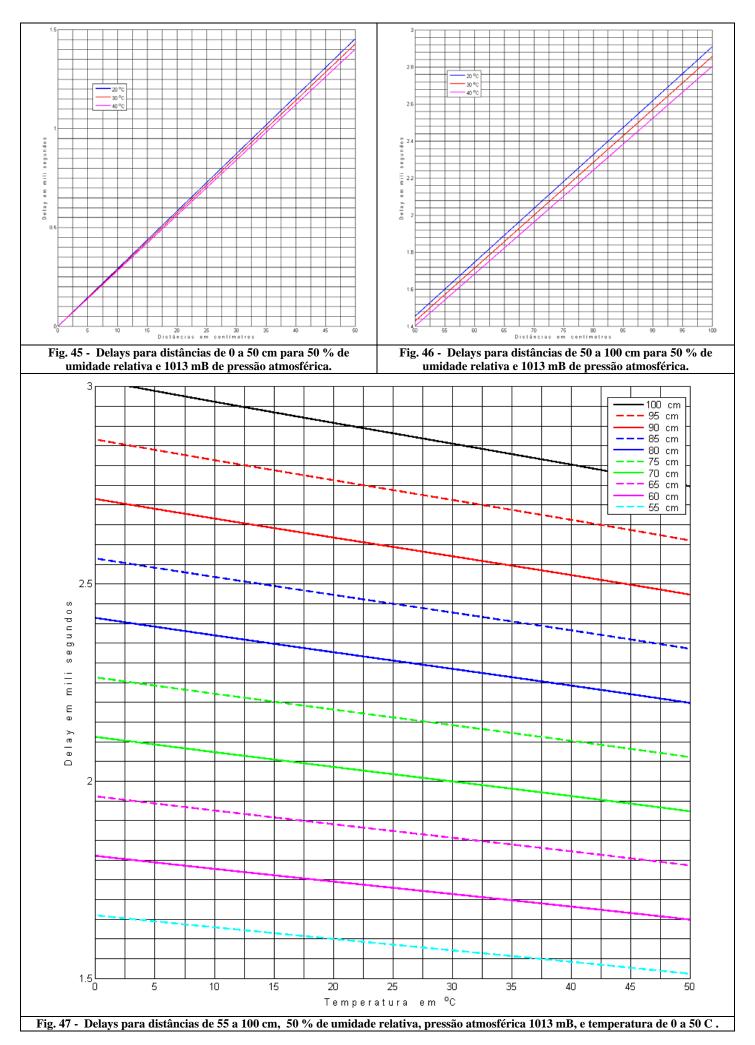
Temp.	UR	Vel. Som	Diferença		
°C	%	m / s	%		
10	0	337,3176	0,20		
10	100	337,9791	0,20		
20	0	343,2224	0,37		
20	100	344,5000	0,57		
30	0	349,0274	0,68		
30	100	351,3980	0,08		
40	0	354,7373	1,20		
	100	358,9877			
Tabela 31 – Variação na velocidade do som devida à					
	umidade re	lativa do ar.			
Temp.	P. Atm.	Vel. Som	D:C		
-	1 . 7 10111.		Diferença		
°C	mB	m/s	%		
			%		
°C 10	mB	m / s	,		
10	mB 1013	m / s 337,6477	0,0117		
	mB 1013 905	m/s 337,6477 337,6872	%		
10 20	mB 1013 905 1013	m/s 337,6477 337,6872 343,8588	% 0,0117 0,0222		
10	mB 1013 905 1013 905	m/s 337,6477 337,6872 343,8588 343,9350	0,0117		
10 20 30	mB 1013 905 1013 905 1013	m/s 337,6477 337,6872 343,8588 343,9350 350,2044	% 0,0117 0,0222 0,0404		
10 20	mB 1013 905 1013 905 1013 905	m/s 337,6477 337,6872 343,8588 343,9350 350,2044 350,3460	% 0,0117 0,0222		


pressão atmosférica.

Temp.	Delay	Delay	Delay	Vel. Som				
°C	62 cm	85 cm	100 cm	m / s				
		<u> </u>						
20.0000	1,8031	2,4719	2.9082	343.8588				
20.5000	1,8014	2,4697	2.9055	344.1718				
21.0000	1,7998	2,4674	2.9029	344.4852				
21.5000	1,7981	2,4652	2.9002	344.7990				
22.0000	1,7965	2,4630	2.8976	345.1131				
22.5000	1,7949	2,4607	2.8950	345.4277				
23.0000	1,7932	2,4585	2.8923	345.7426				
23.5000	1,7916	2,4562	2.8897	346.0579				
24.0000	1,7900	2,4540	2.8871	346.3737				
24.5000	1,7883	2,4518	2.8844	346.6900				
21.3000	1,7005	2, 1010	2.0011	210.0700				
25.0000	1,7867	2,4495	2.8818	347.0067				
25.5000	1,7851	2,4473	2.8792	347.3239				
26.0000	1,7834	2,4450	2.8765	347.6417				
26.5000	1,7818	2,4428	2.8739	347.9599				
27.0000	1,7802	2,4406	2.8713	348.2788				
27.5000	1,7786	2,4383	2.8686	348.5981				
28.0000	1,7769	2,4361	2.8660	348.9181				
28.5000	1,7753	2,4339	2.8634	349.2387				
29.0000	1,7737	2,4316	2.8607	349.5599				
29.5000	1,7720	2,4294	2.8581	349.8818				
	Ź	, , , , , , , , , , , , , , , , , , ,						
30.0000	1,7704	2,4272	2.8555	350.2044				
30.5000	1,7688	2,4249	2.8528	350.5277				
31.0000	1,7671	2,4227	2.8502	350.8516				
31.5000	1,7655	2,4204	2.8476	351.1764				
32.0000	1,7639	2,4182	2.8449	351.5019				
32.5000	1,7622	2,4160	2.8423	351.8282				
33.0000	1,7606	2,4137	2.8397	352.1553				
33.5000	1,7589	2,4115	2.8370	352.4833				
34.0000	1,7573	2,4092	2.8344	352.8121				
34.5000	1,7557	2,4070	2.8317	353.1419				
35.0000	1,7540	2,4047	2.8291	353.4725				
35.5000	1,7524	2,4025	2.8264	353.8041				
36.0000	1,7507	2,4002	2.8238	354.1368				
36.5000	1,7491	2,3979	2.8211	354.4704				
37.0000	1,7474	2,3957	2.8184	354.8050				
37.5000	1,7458	2,3934	2.8158	355.1407				
38.0000	1,7441	2,3911	2.8131	355.4776				
38.5000	1,7425	2,3889	2.8104	355.8155				
39.0000	1,7408	2,3866	2.8078	356.1547				
39.5000	1,7392	2,3843	2.8051	356.4950				
40.0000	1,7375	2,3820	2.8024	356.8365				
Tabela 30 – Y	Velocidade do s	om e delays pa	ra 62, 85 e 100	cm , 50 % de				
umidade relativa, 1013 mB de pressão e temperatura de 20 a 40 graus.								

Nas tabelas e gráficos apresentados para obtenção da velocidade do som ou do delay, correspondente a uma determinada temperatura, a umidade relativa do ar e a pressão atmosférica foram fixadas, respectivamente, em 50 % e 1013 mB. Conforme podemos ver na Tabela 31 a influência da umidade na velocidade do som é pequena, o que nos permite mantê-la constante e igual a 50 %.

A pressão atmosférica influencia menos ainda e por isso, nos gráficos e tabelas aqui fornecidas, foi fixada em 1013 milibares, que é a pressão atmosférica ao nível médio


do mar. Ver a referência [6], a respeito da influência das condições ambientais na velocidade do som no ar.

A título de comprovação calculamos na Tabela 32 as variações na velocidade do som ocasionadas por uma variação na pressão atmosférica de 1013 para 905 mB, o que corresponde a um acréscimo de 1000 m de altitude em relação ao nível médio do mar. Conforme podemos ver, as diferenças foram desprezíveis. Por esse motivo, consideramos constante o valor 1013 mB, que corresponde a 0 metros de altura.

Como a temperatura influencia a velocidade de propagação do som no ar e, por conseguinte, o tempo do percurso (delay) para percorrer uma dada distância, na Fig. 44 podemos obter a velocidade do som para temperaturas de 0 a 50 graus centígrados e os respectivos retardos para 1 metro de distância.

Tabela 33 - Soma de senoides de mesma amplitude e freqüência.								
Fase	Soma	Soma dB		Fase	Soma	Soma dB		
0 ± 10	2,00 1,99	6,02 5,99		± 130	0,85	- 1,46		
± 20 ± 30	1,97 1,93	5,89 5,72		± 140	0,68	- 3,30		
± 40 ± 50	1,88 1,81	5,48 5,17		± 150	0,52	- 5,72		
± 60 ± 70	1,73 1,64	4,77 4,29		± 160	0,35	- 9,19		
± 80 ± 90	1,53 1,41	3,71 3,01		± 170	0,17	- 15,17		
± 100 ± 110	1,29 1,15	2,18 1,19		± 180	0	- ∞		
± 120 1,00 0,00 Região Preferencial Região a Evitar						vitar		

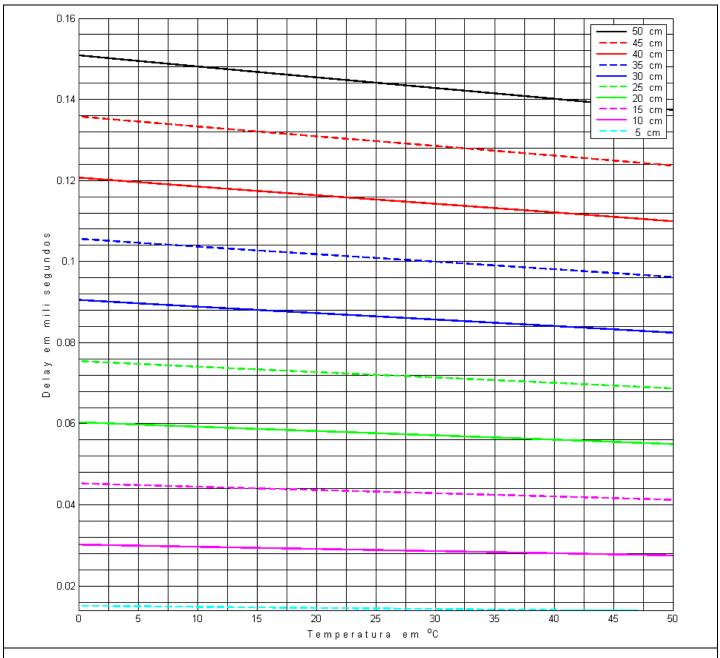
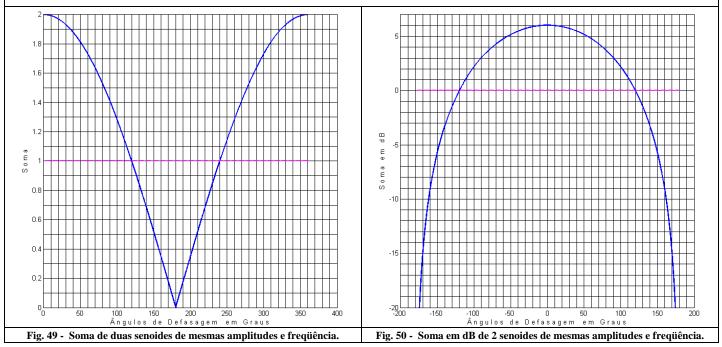
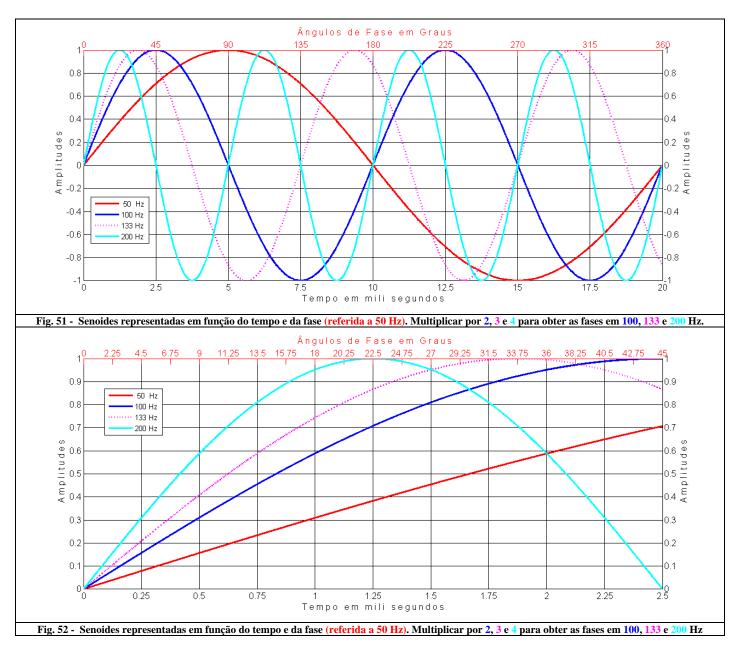
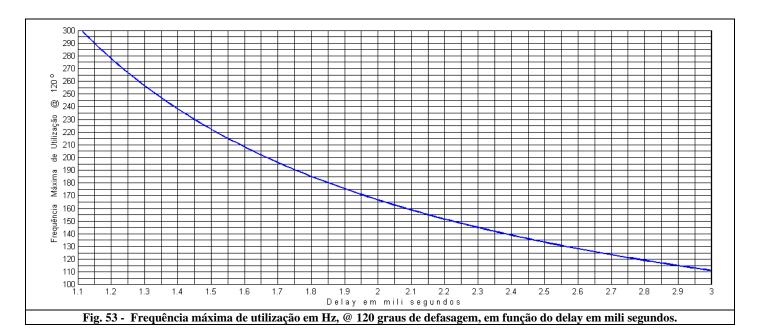



Fig.~48 - Delays~para~distâncias~de~5~a~50~cm, 50~%~de~umidade~relativa, pressão~atmosférica~1013~mB,~e~temperatura~de~0~a~50~C~.

Nas Figs. 45 e 46 tempos os tempos de retardo introduzidos, respectivamente, por distâncias de 0 a 50 cm e de 50 a 100 cm. Ambas fornecem o delay para temperaturas de 20, 30 e 40 graus, tendo a umidade do ar e a pressão atmosférica ficado constantes em 50 % e 1013 mB.

A Fig. 47 fornece os delays para distâncias variando de 55 a 100 cm, de 5 em 5 cm, em uma faixa de temperatura de 0 a 50 graus. A Fig. 48 é idêntica, para distâncias de 5 a 50 cm.


As Figs. 49 e 50 mostram, graficamente, o resultado da soma de duas senoides em função do ângulo de fase. Na primeira delas temos a soma com os ângulos de defasagem variando de 0 a 360 graus, de modo que o ponto de nulo, em 180 graus, ficou no centro; na segunda a soma está em dB e os ângulos variam de – 180 a +180, colocando o ponto de máximo no centro do gráfico.


O delay introduzido em um sinal corresponde a um ângulo de defasagem $\theta_D = \omega \cdot T_D = 2 \cdot \pi \cdot f \cdot T_D$.

Desse modo, quando somamos sinais com diferentes fases precisamos saber como esta influencia no resultado da superposição dos sinais (soma).

A Tabela 33, na pag. 36, mostra os resultados da soma de duas senoides, de mesma amplitude e frequência, para diferentes ângulos de fase, e nos permite concluir o seguinte:

- Quando os sinais estão em fase, a amplitude resultante dobra;
- Quando os sinais estão em oposição (defasados de 180 graus) o resultado da soma é nulo;
- De 0 a 120 graus a amplitude relativa varia de 2 até 1, não havendo atenuação do sinal;
- De 0 a 90 graus o resultado da soma varia apenas 3 dB;
- De 90 a 120 temos outra variação de 3 dB, mas em um intervalo um terço do anterior;
- De 120 a 180 graus o sinal resultante é atenuado e a soma tende rapidamente para zero;

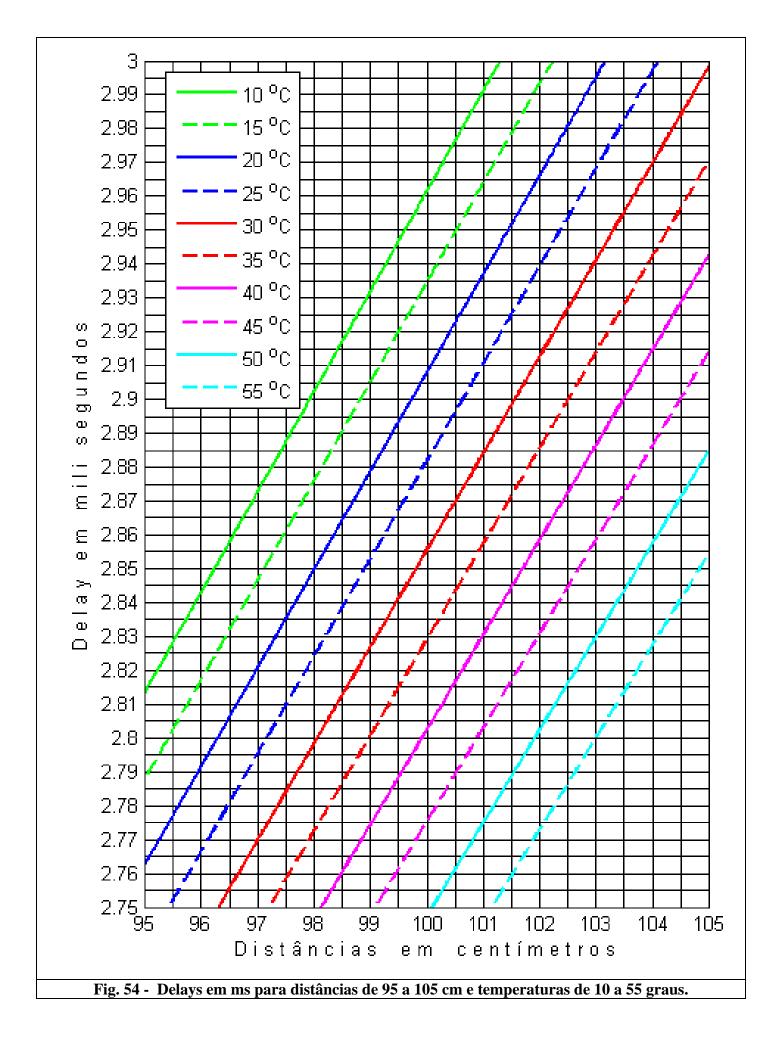
Supondo um tempo de delay igual a T_D (em ms), o ângulo de fase (em radianos), em função da freqüência, será dado pela equação $\theta_{Drd} = 2 \cdot \pi \cdot f \cdot T_D / 1000$, e convertido para graus transforma-se em $\theta_D = 0.36 \cdot f \cdot T_D$.

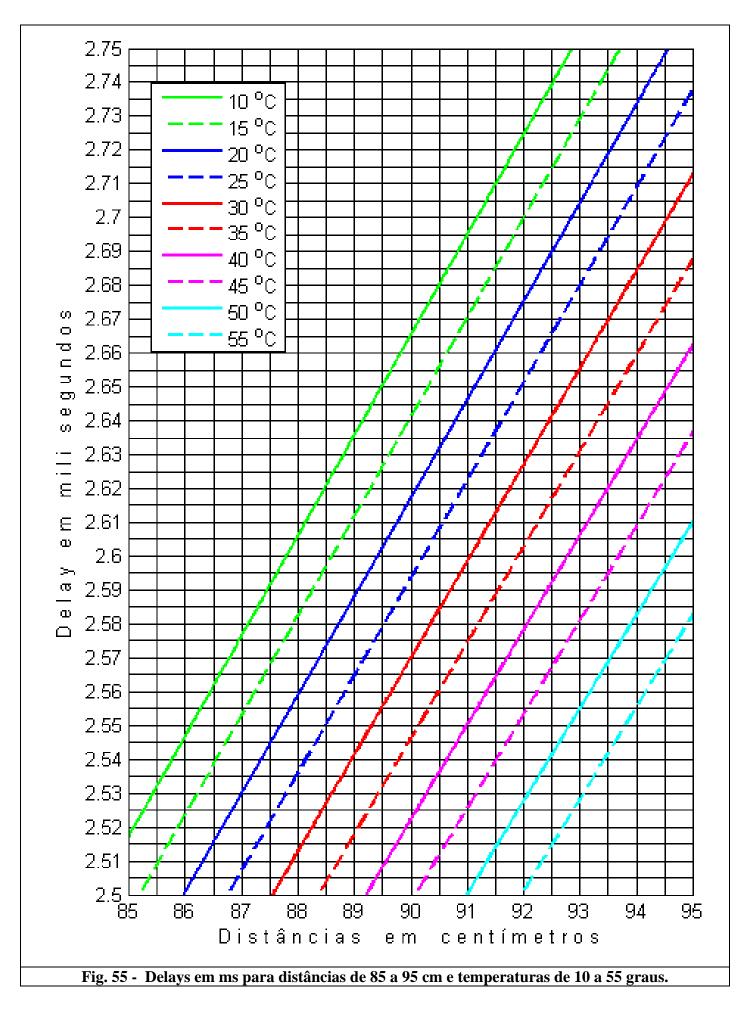
A freqüência onde o ângulo de fase é igual a 120 graus, ou seja, o limite da utilização pode ser calculado através de $F_{120^{\circ}}=1000$ /3· T_{D} .

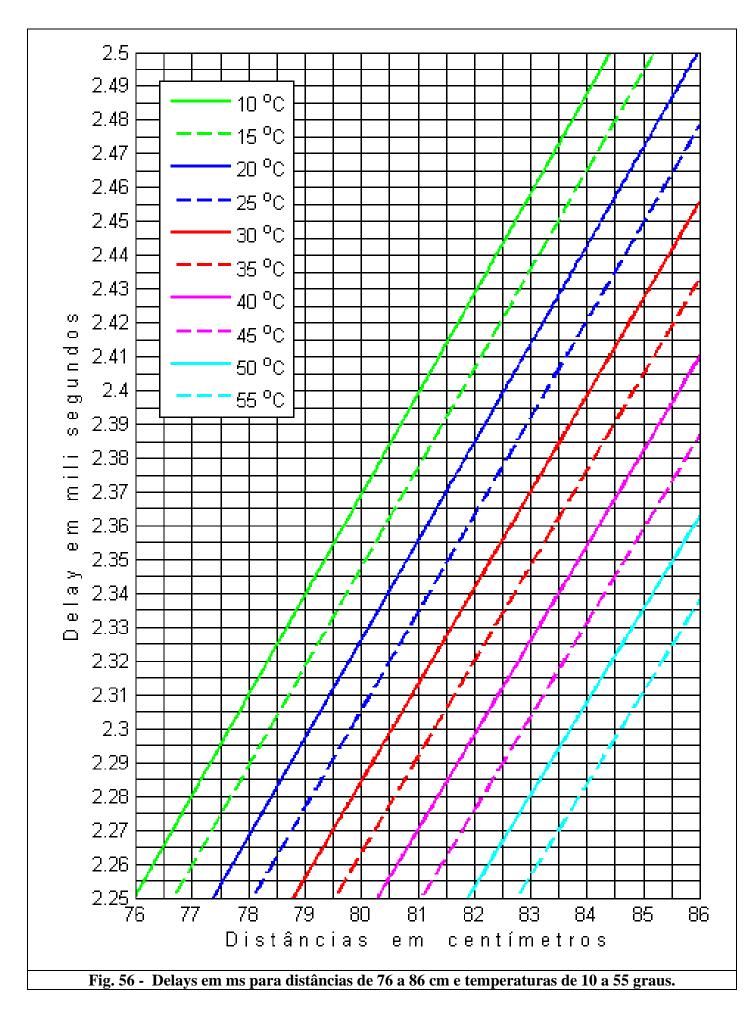
As Figs. 51 e 52 mostram as relações entre tempo e fase para freqüências de 50, 100 e 200 Hz e um delay de 2,5 mili segundos e a freqüência correspondente à defasagem de 120 graus.

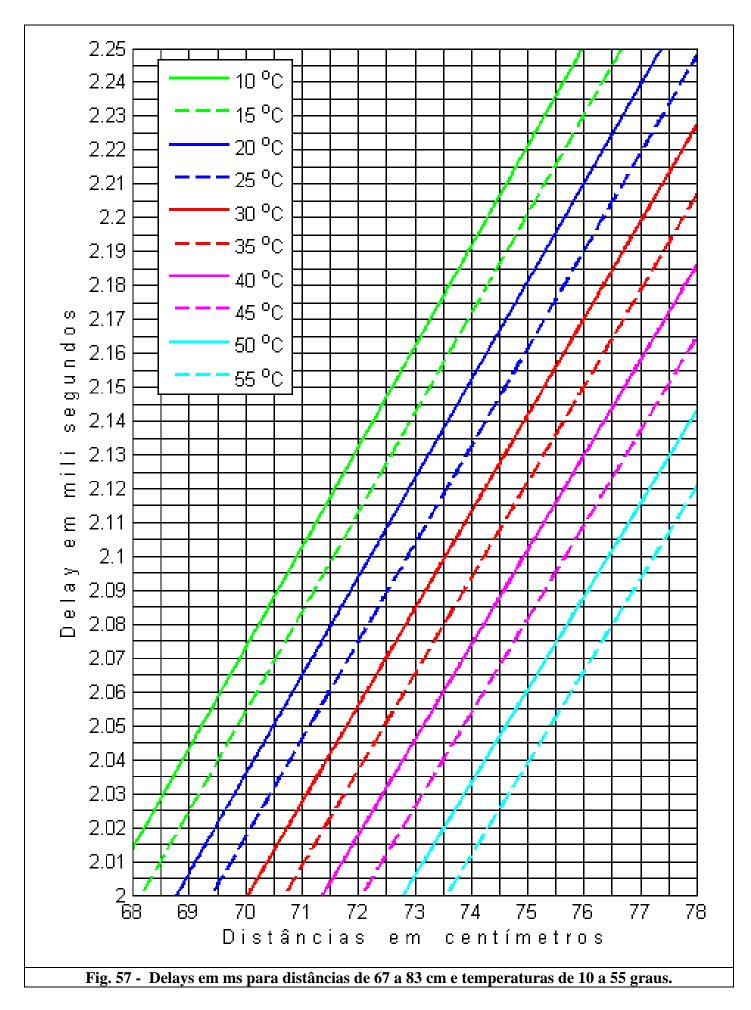
Para sabermos qual será a freqüência máxima utilizável, segundo o critério dos 120 graus de defasagem, em função do delay, basta consultar a Fig. 53.

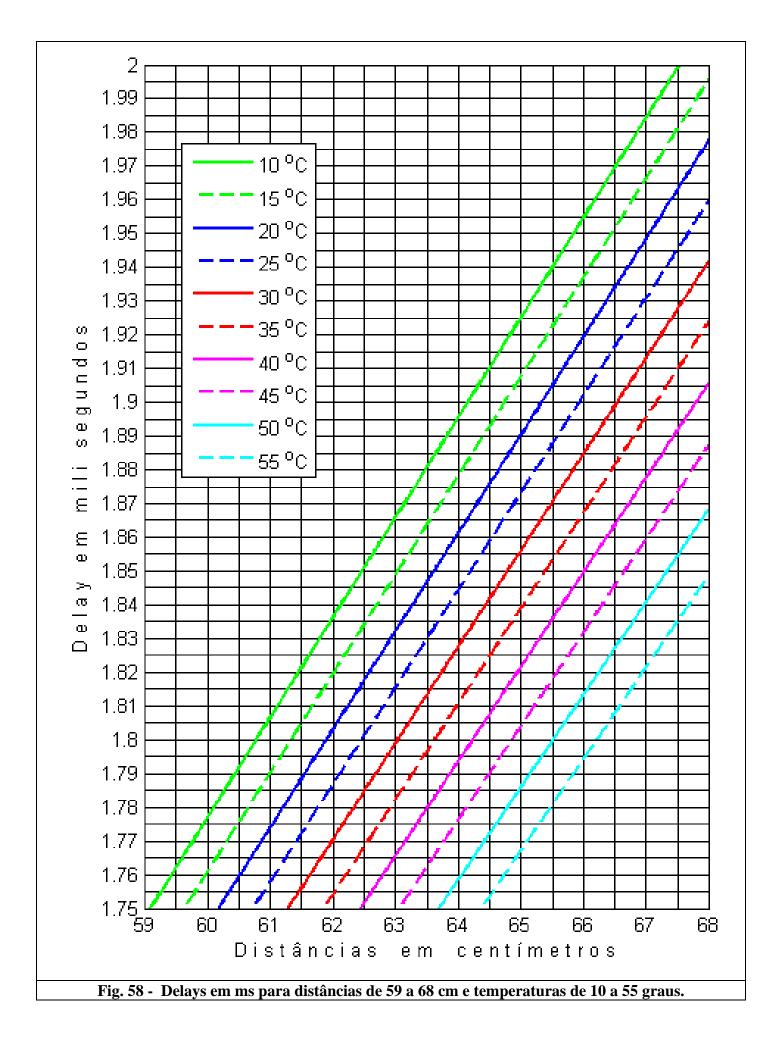
Na Tabela 34 vemos as correspondências entre diversas freqüências, e seus respectivos períodos, com os ângulos de fase criados por uma distância que provocou um retardo de 2,5 ms. Lembramos que freqüência e período não dependem das condições atmosféricas (Temperatura, Umidade e Pressão), mas velocidade de propagação do som e tempo de retardo, sim.


Os resultados mostram que um retardo de 2,5 ms atingirá o limite da soma utilizável (que conforme vimos fica dentro do intervalo de $\pm 120\,^{\circ}$ da fase), em uma freqüência de $1000/3\cdot 2,5=133,3$ Hz, o que pode ser confirmado na Fig. 53 .


Freq.	Período	Fase		Freq.	Período	Fase
Hz	ms	graus		Hz	ms	graus
0	8	0		110	9,09	99
10	100	9		120	8,33	108
20	50	18		130	7,69	117
30	33,33	27		133,3	7,5	120
40	25	36		140	7,14	126
50	20	45		150	6,67	135
60	16,67	54		160	6,25	144
70	14,29	63		170	5,88	153
80	12,5	72		180	5,56	162
90	11,11	81		190	5,26	171
100	10	90		200	5	180
Tabela 34 – Freqüências de 0 a 200 Hz, e seus respecti-						
vos períodos, com fases referentes a um delay de 2,5 ms.						

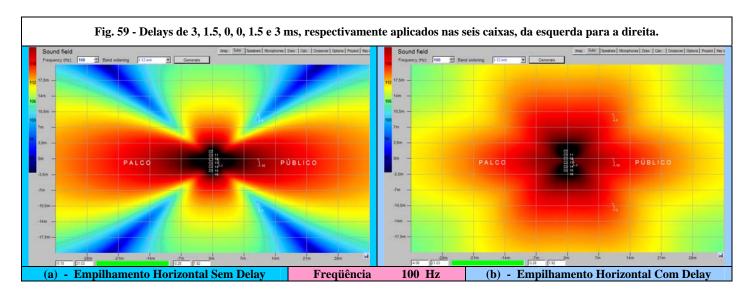

As cinco curvas mostradas nas Figs. 54 a 58 fornecem os delays nos intervalos 1,75 - 2,0, 2 - 2,25, 2,25 - 2,5, 2,5 - 2,75 e 2,75 - 3 mili segundos, em função da distância.

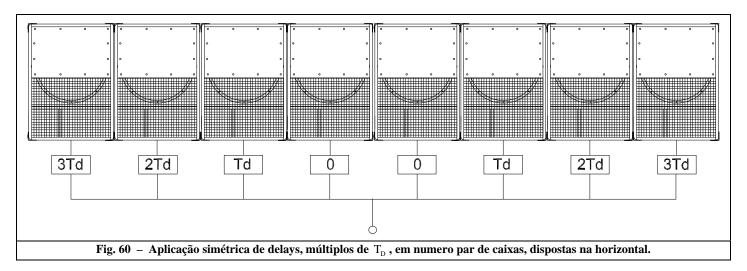

Na Fig. 56 vemos que um retardo de 2,5 ms corresponderá a uma distância de 85 cm, para uma temperatura de 13,85 graus (velocidade do som igual a 340 m/s).


Para 20 graus esta distância mudará para 86 cm, pois a velocidade de propagação do som subiu para 343,86 m/s fazendo com que uma maior distância fosse percorrida em um mesmo tempo.

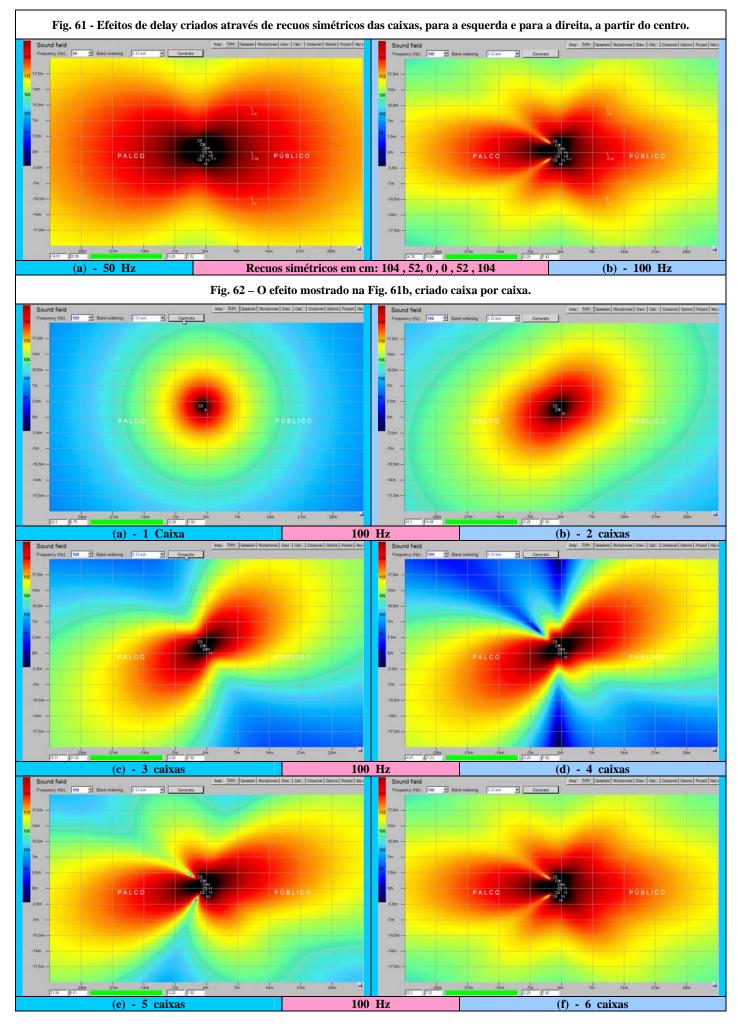
Empilhamento Horizontal Com Delay

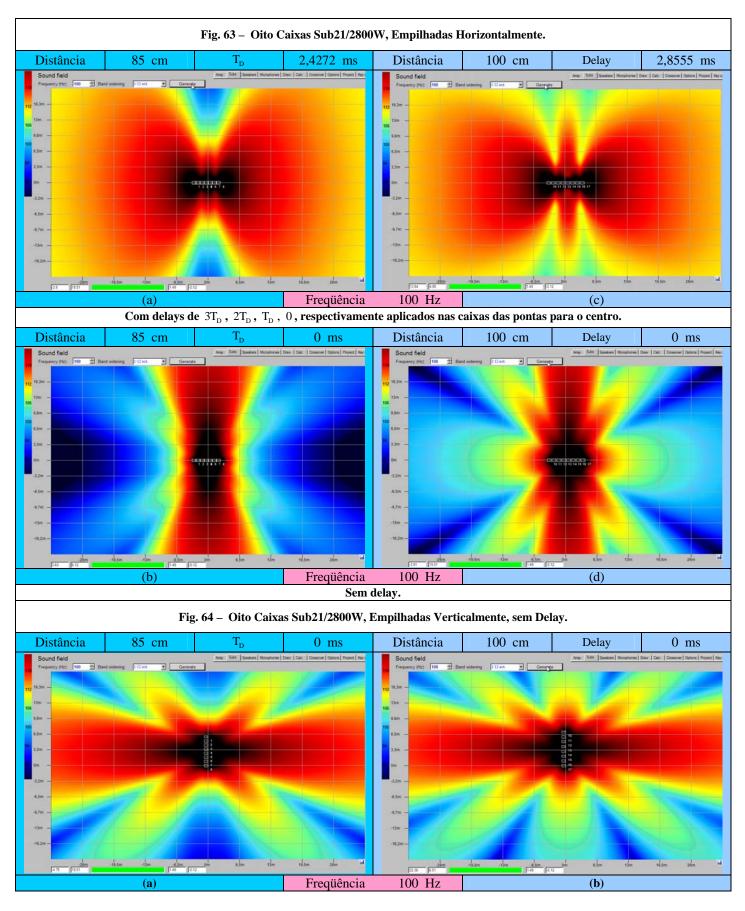
A aplicação adequada de delay pode minimizar o problema do estreitamento da cobertura horizontal que acontece quando as caixas são dispostas na horizontal.

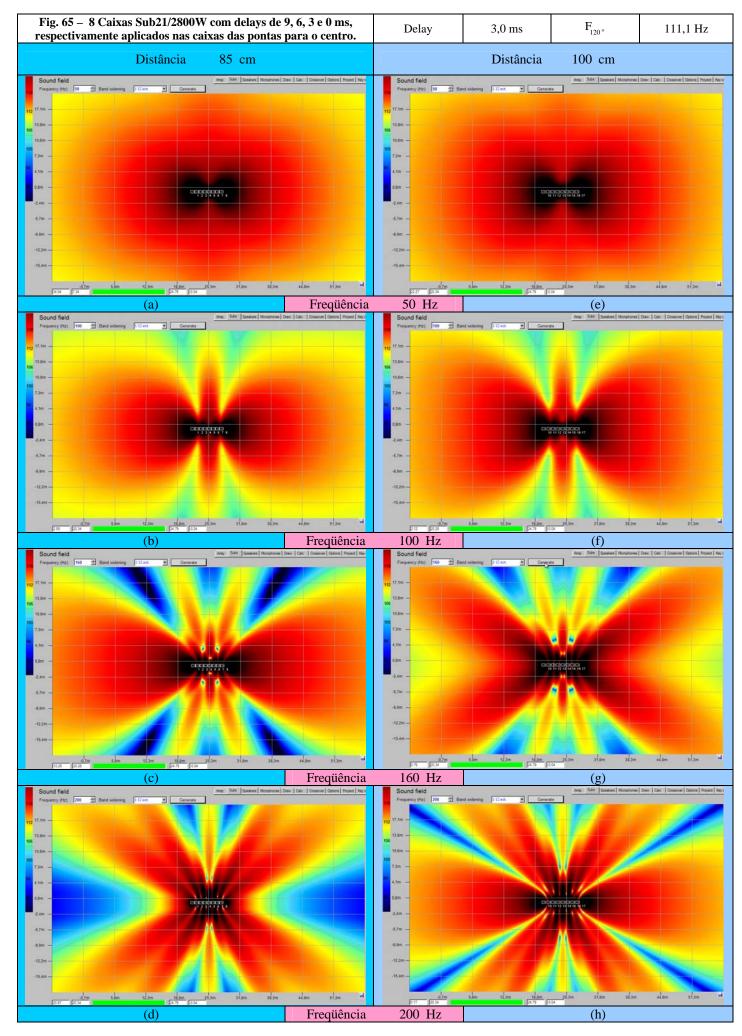

Ao delay corresponde uma distância ${f d}$, equivalente àquela percorrida pela onda sonora no tempo T_D , conforme a equação $d=C\cdot T_D$, onde C é a velocidade de propagação do som em m/s.

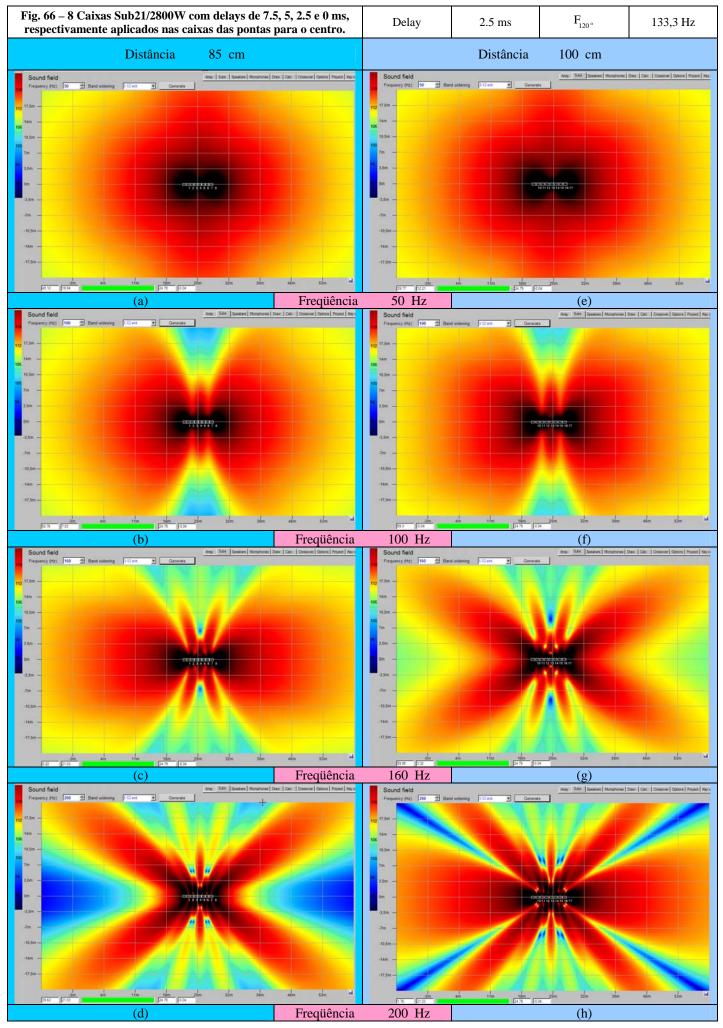

Assim, para $T=30~^{\circ}$ C , 50 % de umidade relativa do ar e 1013 mB de pressão atmosférica, a velocidade de propagação do som vale 350,2044 m/s fazendo com que um delay de 2,4272 ms corresponda a uma distância de 85 cm enquanto que 2,8555 corresponderá a 1 m.

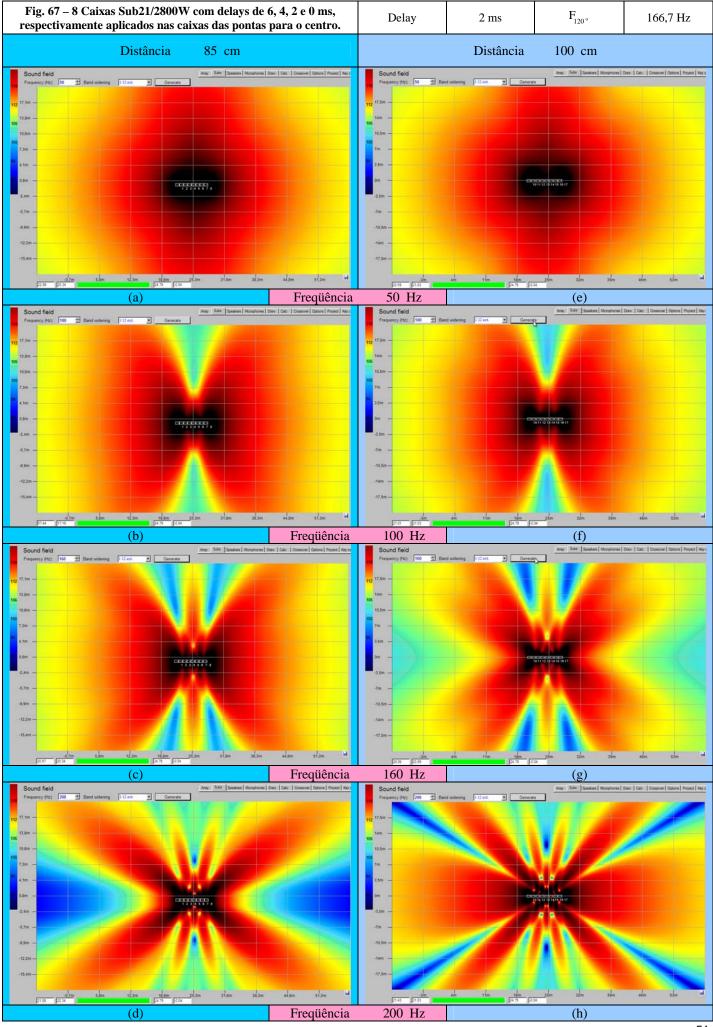
Esses valores de delay podem ser obtidos, respectivamente, nas Figs. 56 e 54.

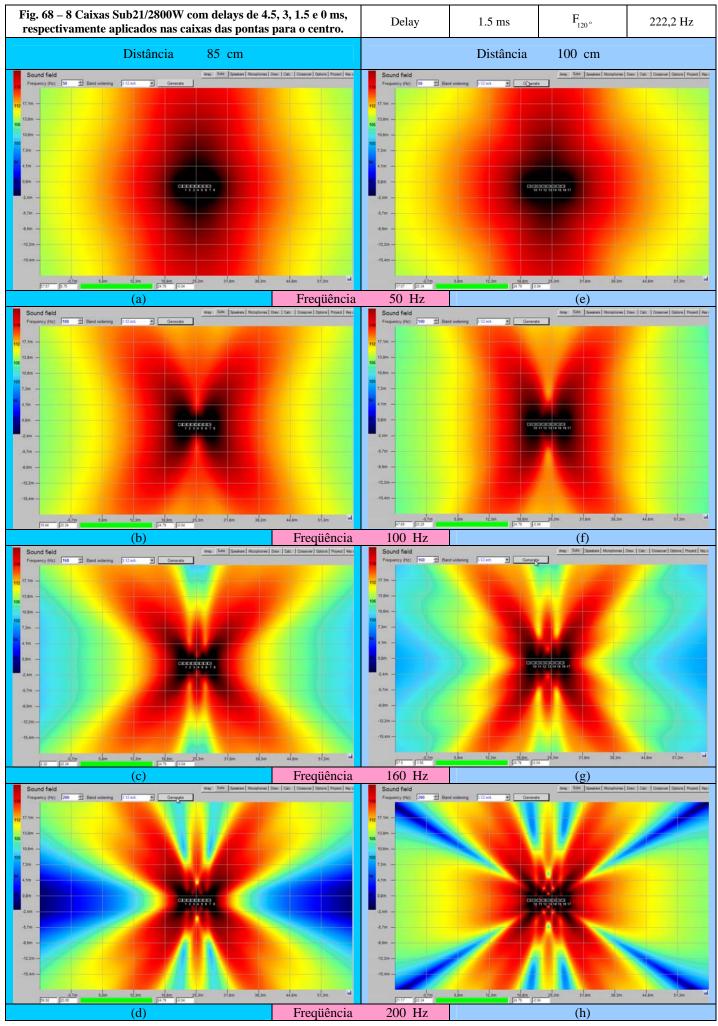

As freqüências máximas de utilização, segundo o critério da defasagem admissível até 120 graus serão, para 85 cm, 137,7 Hz e para 100 cm, 116,7 Hz, o que pode ser confirmado na Fig. 53.

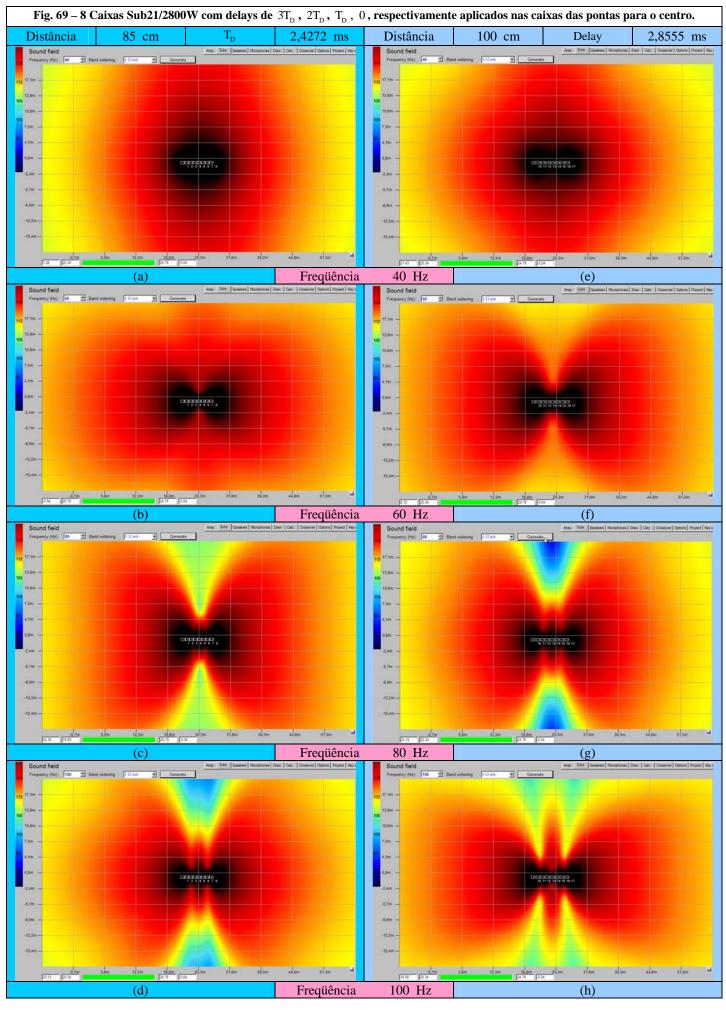

Variando o tempo de delay pode-se alterar o diagrama de radiação, conforme vemos na Fig. 59, onde em um empilhamento horizontal de seis caixas foram aplicados, simetricamente, das pontas para o centro, delays múltiplos de 1,5 ms, conforme a Fig. 60 (para quantidades pares de caixas), ao invés de 2,43 ms, como seria de esperar, pois as caixas estavam espaçadas de 85 cm e submetidas a uma temperatura de 30 graus Celsius. Em outras figuras aplicaremos o retardo de 2,43 ms para distâncias de 85 cm.

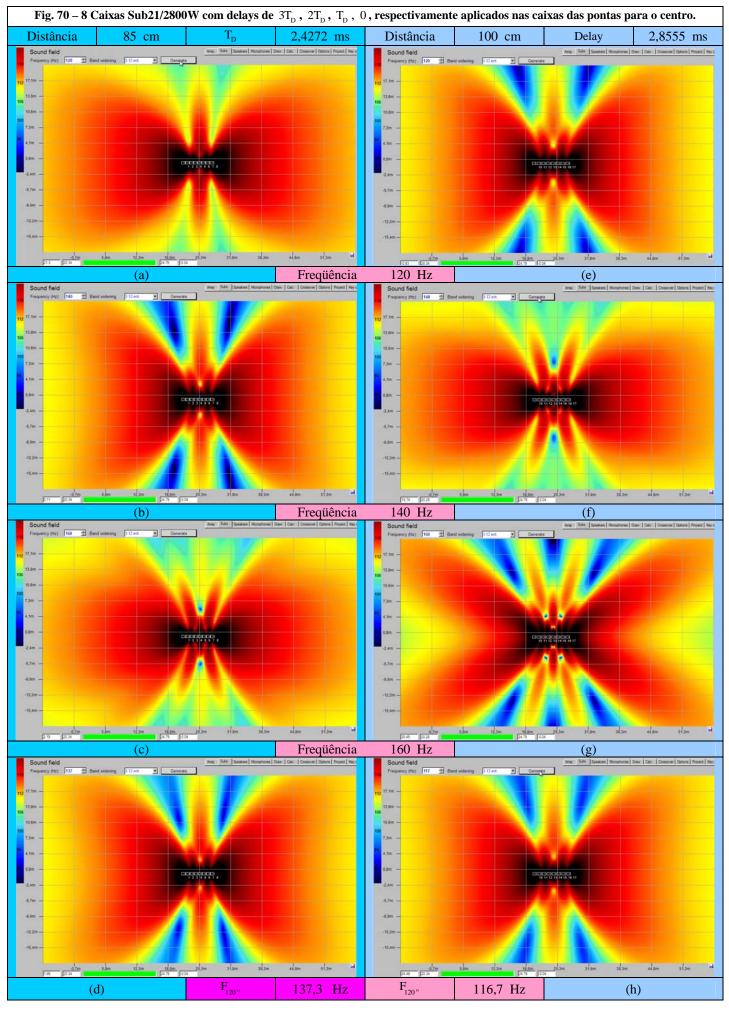

Através do distanciamento físico entre caixas pode-se gerar um efeito de delay, mas não exatamente igual ao conseguido eletronicamente, conforme podemos constatar comparando as Figs. 59b e 61b. Nesta ultima foi aplicado um recuo simétrico, em múltiplos inteiros de 52 cm, distância que corresponde ao delay de 1,5 ms utilizado na Fig. 59b. O delay eletrônico produziu uma cobertura simétrica, no eixo palcopúblico, por atuar igualmente em todas as direções, o que não acontece com o delay físico.

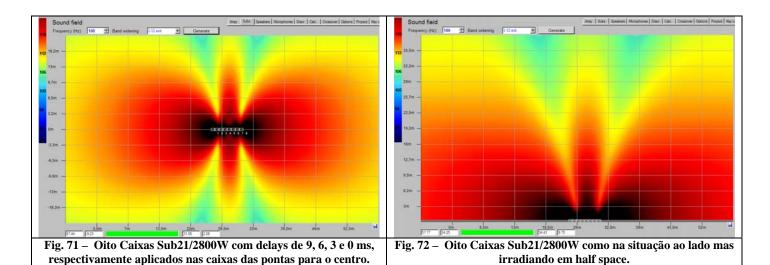





Tanto o delay eletrônico quanto o físico têm a propriedade de girar o eixo da cobertura, o que pode ser observado na Fig. 62, para os mesmos delays físicos que geraram os gráficos da Fig. 61, mas aplicados um de cada vez.


Adiante, quando tratarmos da configuração End Fire, faremos algo semelhante com o delay eletrônico.





A Fig. 63 permite observar os diagramas de cobertura produzidos por oito caixas Sub21/2800W, empilhadas horizontalmente, distanciadas de 85 e 100 cm, operando em 100 Hz, com delays simétricos, aplicados e sem delay.

Na Fig. 64 vemos a cobertura conseguida com oito caixas Sub21/2800W, empilhadas verticalmente, sem o uso de delay.

Nas Figs. 65 a 70 podemos verificar o efeito de diferentes tempos de retardo, aplicados em oito caixas Sub21/2800W, empilhadas horizontalmente, para diversas freqüências.

Como podemos constatar o delay resolveu substancialmente o problema do estreitamento da cobertura horizontal.

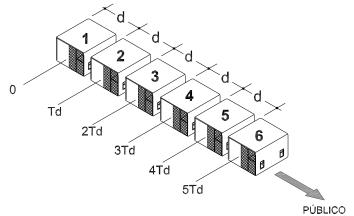
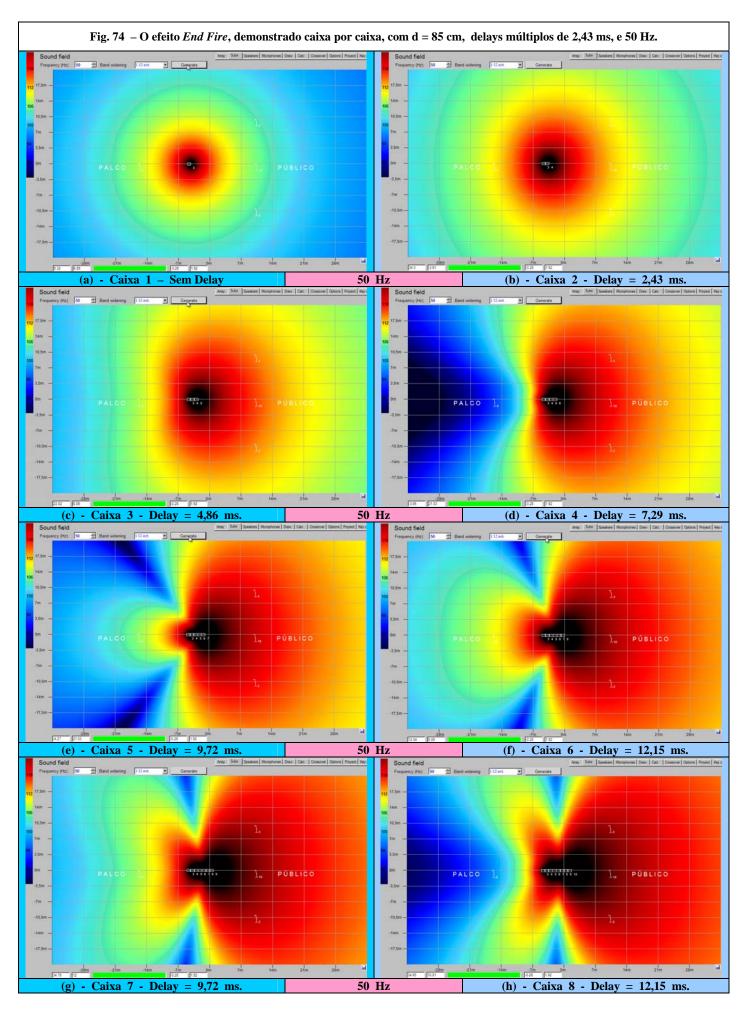
As Figs.71 e 72 permitem observar a influência do piso atuando como plano refletor, em oito caixas empilhadas horizontalmente, com delays simétricos.

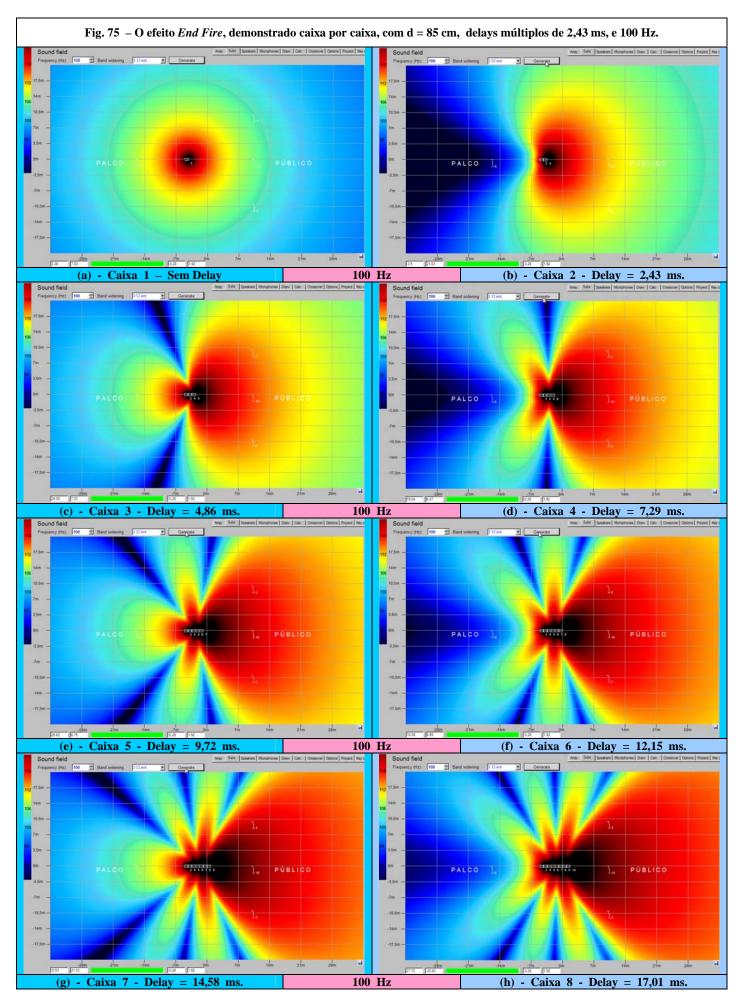
Empilhamento End Fire

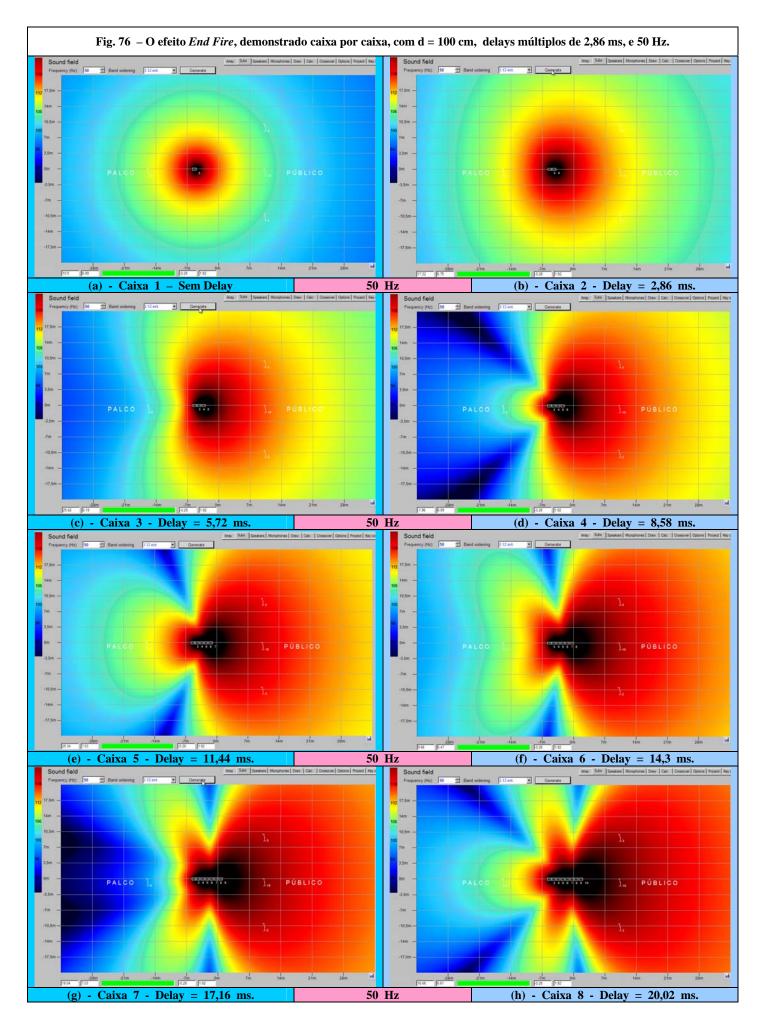
Nesta modalidade, as caixas são alinhadas na horizontal, uniformemente espaçadas de uma distância **d**, com a linha por elas formada apontando para o publico, conforme vemos na Fig. 73.

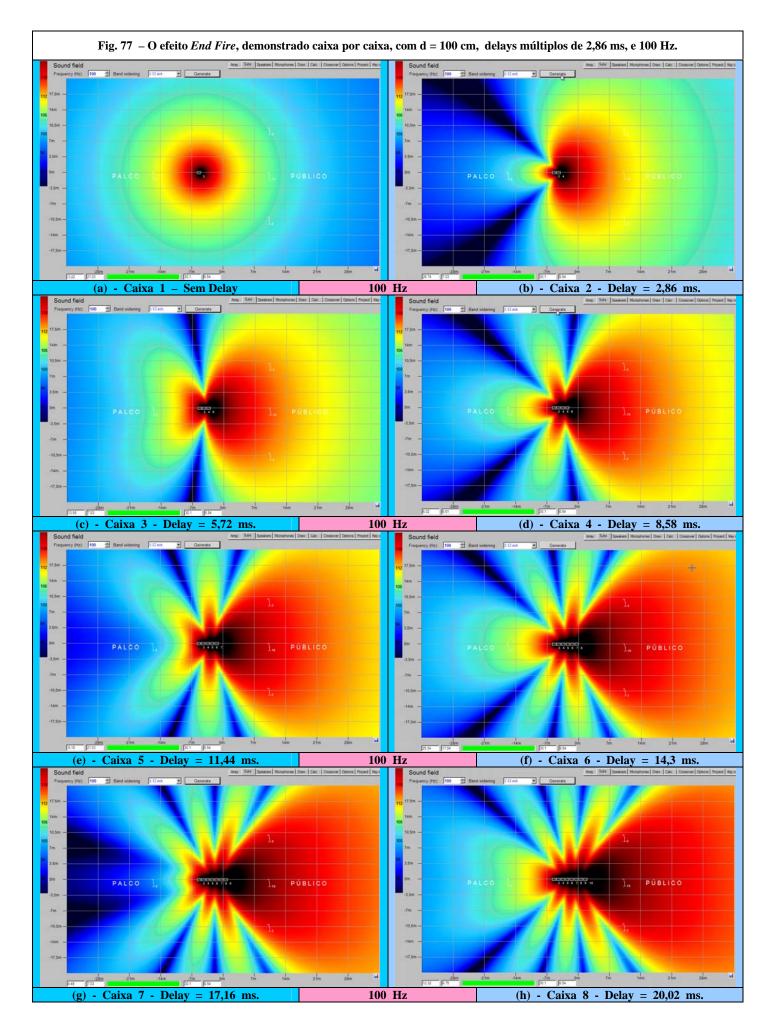
A caixa do fim da linha (*end*) será alimentada (*fired*) sem nenhum delay. As subseqüentes, na ordem em que se sucederem em direção ao público receberão delays de T_D , $2 \cdot T_D$, $3 \cdot T_D$, $4 \cdot T_D$, $5 \cdot T_D$ e assim sucessivamente.

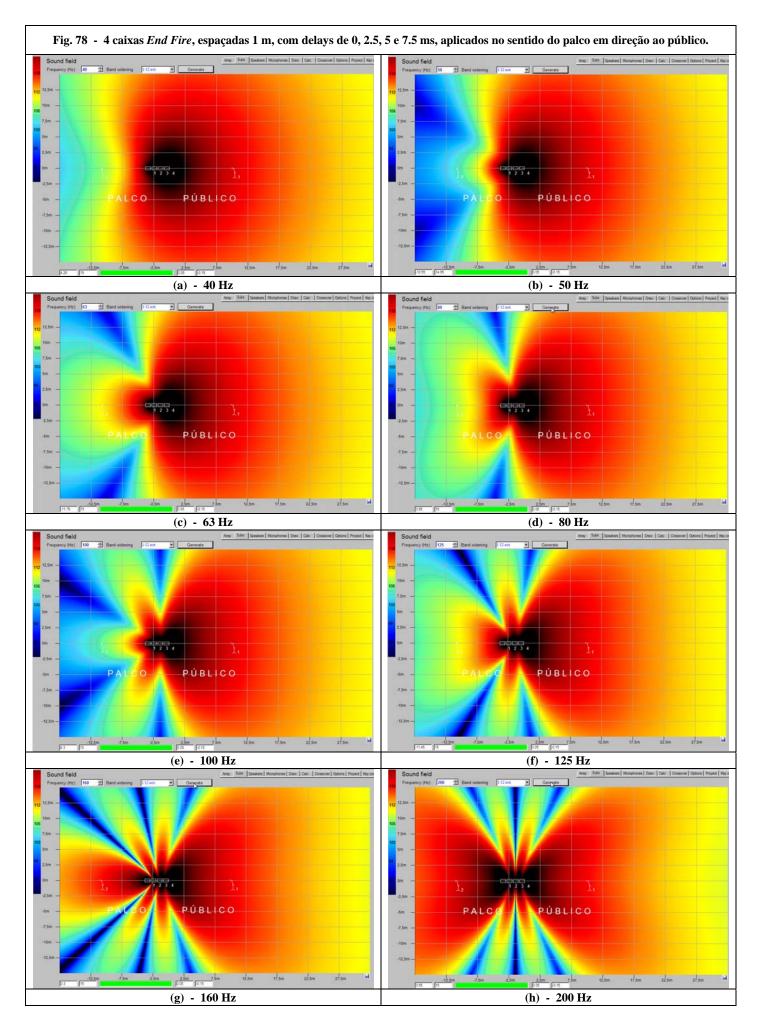
Isso faz com que a segunda caixa espere a chegada da onda sonora irradiada pela primeira caixa; o delay, duas vezes maior, aplicado na terceira, faz com que ela aguarde o sinal das caixas 1

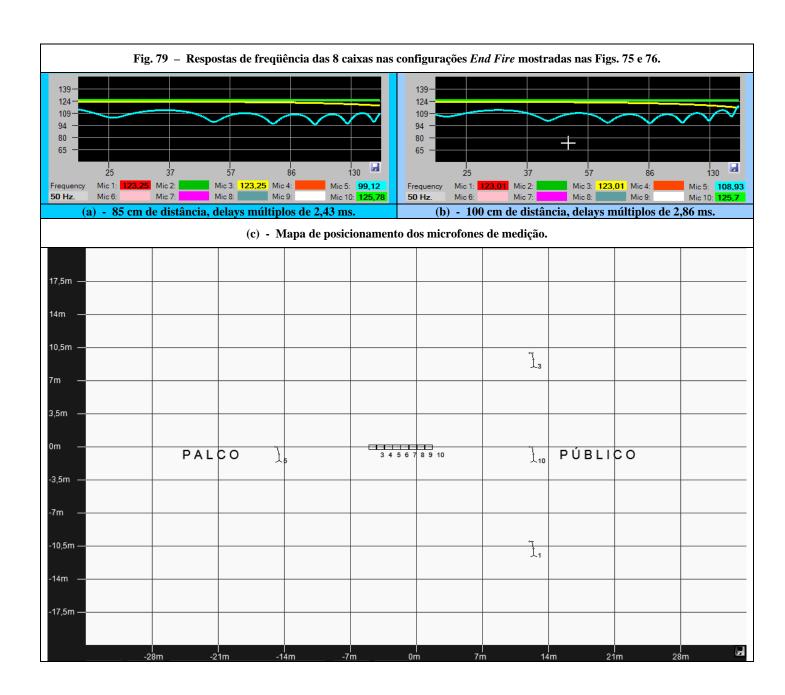




Fig. 73 - Seis subs dispostos na configuração End Fire.


e 2, que chegarão juntas e em fase com o sinal da terceira, e assim sucessivamente. Para isso acontecer, o delay T_D deverá corresponder ao tempo gasto pela onda sonora para percorrer a distância \mathbf{d} , ou seja, $d = C \cdot T_D$. Desse modo, o sinal irradiado em direção ao publico será a soma dos sinais de cada uma das caixas, sinais estes que estarão em fase, reforçando-se.


No entanto, no lado oposto, em direção ao palco, os sinais não estarão em fase o que provocará as interferências destrutivas que diminuirão a intensidade do lóbulo traseiro, o que é muito benéfico, pois diminui acentuadamente a intensidade das baixas freqüências irradiadas para o palco.


A eficácia desse cancelamento é menor nas frequências mais baixas, como poderá ser visto nas figuras que se seguem, aumentando com a frequência e o numero de caixas, assim como a direcionalidade.



Na Fig.79, através do posicionamento de 5 microfones (Fig. 79c) vemos as respostas de freqüência correspondentes. Como as respostas dos microfones 1 e 3 superpõem-se, vemos apenas quatro curvas. Através das Figs. 79a e 79b podemos ver o acentuado cancelamento na região do palco, o que é muito benéfico.

Subwoofer Cardióide

Os arrays tipo Cardióide são assim chamados em função da curva que define sua cobertura polar, a cardióide. Essa curva pode ser dada por $R_{(\theta)} = 1 \pm \cos(\theta)$ ou $R_{(\theta)} = 1 \pm \sin(\theta)$. A diferença entre elas é a orientação em relação aos quatro pontos cardiais. Na Fig. 80 vemos a representação polar da cardióide cosenoidal positiva.

Neste gráfico, a zero graus, o sinal tem o dobro da amplitude do sinal de entrada enquanto que o cancelamento a 180 graus foi total.

A 90 graus, a amplitude do sinal resultante foi igual a 1.

Para que esta resposta seja conseguida deveremos montar o sistema conforme na Fig. 81a, onde são posicionadas duas caixas, distando \mathbf{d} centímetros entre seus centros. A caixa de trás, ou seja, a mais distante do publico, recebe um sinal invertido e com um delay T_D exatamente igual ao tempo gasto para a onda sonora percorrer a distância \mathbf{d} . Na caixa da frente,

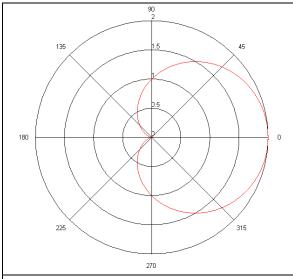
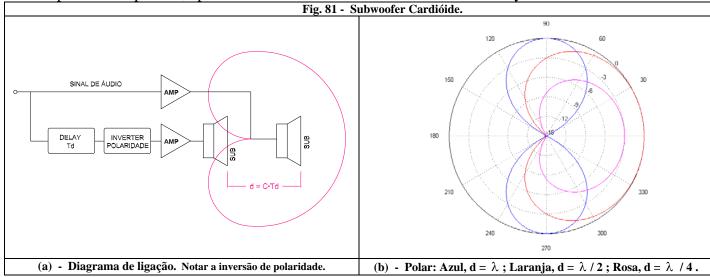



Fig. 80 - Diagrama polar da cardióide $1 + \cos(\theta)$.

a mais próxima do público, aplica-se um sinal sem inversão de fase e sem delay.

Na Fig. 81b vemos que os subs cardióides têm uma faixa de atuação mais crítica que os *End Fire*: o funcionamento fica restrito a uma oitava, compreendida entre $\lambda / 2$ e $\lambda / 4$, com o sinal no eixo sofrendo uma atenuação de 3 dB entre os extremos da faixa de freqüência de trabalho.

Assim, devemos determinar a distância **d**, e o correspondente delay T_D em função da quarta parte do comprimento de onda da maior freqüência a ser reproduzida. Na Fig. 82 temos um gráfico que fornece esses valores para freqüências compreendidas entre 80 e 120 Hz, estando os correspondentes tempos de delay representados na Fig. 83.

Conclusão

Acreditamos ter fornecido de modo claro e abundante as ferramentas necessárias para os profissionais de PA poderem dimensionar o sistema de subs necessário para atender os requisitos de um determinado evento, em função da densidade e da distribuição do público, escolhendo o empilhamento mais adequado e aplicando os valores de delay mais adequados conforme as condições atmosféricas e a cobertura desejada.

O tópico referente à resposta cardióide merece ser ampliada, o que pretendemos fazer em novo trabalho.

Agradecimentos:

O Autor agradece à STUDIO R pelos recursos colocados à disposição do Autor, que a exime de quaisquer responsabilidades quanto às informações aqui veiculadas, da inteira responsabilidade do Autor.

Bibliografia

[1] – Atenuação do Som no Ar por Absorção

Homero Sette Silva, apresentado na 10^a Convenção da AES, de 8 a 10 de maio de 2006.

Disponível em <u>www.studior.com.br</u> e <u>www.homerosette.com.br</u>.

[2] – Efficiency of Multiple-Driver Speaker Systems

K.P. Zacharia e Sivanarayana Mallela – Indian Institute of Technology, Bombaim, Índia.

Apresentado na International Electronic Convention do IREE, em 1975, na Austrália.

[3] - Ray-End 2.50 (anteriormente denominado GPA)

Software de Simulação gratuito

Disponível em http://gpa.hms2k.cl/index en.html

[4] - Run & Gun Subs

Bennett Prescott, Live Sound International, Nov/2010

Disponível em http://www.campuspa.com/downloads/SubwooferArraying.pdf

[5] - Advanced Sub Techniques

Bennett Prescott, Live Sound International, Dez/2010

 $Dispon\'{i}vel\ em\ \underline{http://campuspa.com/downloads/AdvancedSubwooferArraying.pdf}$

[6] – O Meio Ambiente Acústico

Homero Sette Silva, disponível em www.homerosette.com.br.

[7] - Subwoofer Arrays, a Practical Guide

Electro-Voice, Junho/2010

Disponível em http://www.electrovoice.com/downloads.php?type=White%20Paper

[8] - Subwoofer Arrays & Beam Steering

Excelsior Audio – AES Live Sound Seminar LS7, Outubro/2011

Disponivel em http://www.excelsior-audio.com/Publications/AES131_LS7_Subwoofer_Arrays.pdf